Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -6, -4])

gp: E = ellinit([1, -1, 1, -6, -4])

magma: E := EllipticCurve([1, -1, 1, -6, -4]);

$$y^2+xy+y=x^3-x^2-6x-4$$ ## Mordell-Weil group structure

$$\Z/{2}\Z \times \Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-1, 0\right)$$, $$\left(3, -2\right)$$ ## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-1, 0\right)$$, $$\left(3, -2\right)$$ ## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$17$$ = $$17$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$289$$ = $$17^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{20346417}{289}$$ = $$3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 17^{-2}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$-0.72320971122131613566604906496\dots$$ Stable Faltings height: $$-0.72320971122131613566604906496\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$3.0941595071022403464191580099\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$2$$  = $$2$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q - q^{2} - q^{4} - 2q^{5} + 4q^{7} + 3q^{8} - 3q^{9} + 2q^{10} - 2q^{13} - 4q^{14} - q^{16} + q^{17} + 3q^{18} - 4q^{19} + O(q^{20})$$ sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 2 $$\Gamma_0(N)$$-optimal: no Manin constant: 2

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$0.38676993838778004330239475124309554740$$

## Local data

This elliptic curve is semistable. There is only one prime of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$17$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X210b.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 14 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 6 \\ 10 & 7 \end{array}\right)$ and has index 96.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type 2 17 ordinary split 0 1 1 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 17a consists of 2 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-1})$$ $$\Z/2\Z \times \Z/4\Z$$ 2.0.4.1-289.2-a5 $2$ $$\Q(\sqrt{17})$$ $$\Z/2\Z \times \Z/4\Z$$ 2.2.17.1-17.1-a5 $4$ $$\Q(i, \sqrt{17})$$ $$\Z/4\Z \times \Z/4\Z$$ Not in database $8$ 8.0.18939904.4 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.4.386201104.1 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.2.182660427.1 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/8\Z$$ Not in database $16$ 16.0.38182730939089616896.1 $$\Z/4\Z \times \Z/8\Z$$ Not in database $16$ 16.0.29960650073923649536.2 $$\Z/4\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.