# Properties

 Label 32a Number of curves 4 Conductor 32 CM -4 Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("32.a1")

sage: E.isogeny_class()

## Elliptic curves in class 32a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
32.a4 32a1 [0, 0, 0, 4, 0]  1 $$\Gamma_0(N)$$-optimal
32.a3 32a2 [0, 0, 0, -1, 0] [2, 2] 2
32.a1 32a3 [0, 0, 0, -11, -14]  4
32.a2 32a4 [0, 0, 0, -11, 14]  4

## Rank

sage: E.rank()

The elliptic curves in class 32a have rank $$0$$.

## Modular form32.2.a.a

sage: E.q_eigenform(10)

$$q - 2q^{5} - 3q^{9} + 6q^{13} + 2q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 