Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.1.2.3a1.3-2.1.0a |
$2$ |
$2$ |
$2$ |
$4$ |
$2$ |
$1$ |
$2$ |
$1$ |
$2$ |
$2$ |
$0$ |
$3$ |
$4$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-1.2.2a |
$2$ |
$2$ |
$2$ |
$4$ |
$1$ |
$1$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$3$ |
$4$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$2$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.2.4a |
$2$ |
$2$ |
$2$ |
$4$ |
$1$ |
$1$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$3$ |
$6$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$2$ |
$2$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.2.5a |
$2$ |
$2$ |
$2$ |
$4$ |
$1$ |
$1$ |
$1$ |
$2$ |
$2$ |
$4$ |
$5$ |
$3$ |
$7$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4]$ |
$[4]$ |
$\langle2\rangle$ |
$(4)$ |
$x^2 + (b_{7} \pi^4 + b_{5} \pi^3) x + c_{8} \pi^5 + \pi$ |
$2$ |
$6$ |
$4$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-3.1.0a |
$2$ |
$3$ |
$2$ |
$6$ |
$3$ |
$1$ |
$3$ |
$1$ |
$2$ |
$2$ |
$0$ |
$3$ |
$6$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$3$ |
$1$ |
$1$ |
$1/6$ |
$1/6$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-1.3.2a |
$2$ |
$3$ |
$2$ |
$6$ |
$1$ |
$1$ |
$1$ |
$3$ |
$2$ |
$6$ |
$2$ |
$3$ |
$4$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^3 + \pi$ |
$1$ |
$1$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-4.1.0a |
$2$ |
$4$ |
$2$ |
$8$ |
$4$ |
$1$ |
$4$ |
$1$ |
$2$ |
$2$ |
$0$ |
$3$ |
$8$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$1$ |
$1$ |
$1/8$ |
$1/8$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-2.2.4a |
$2$ |
$4$ |
$2$ |
$8$ |
$2$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$4$ |
$3$ |
$8$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$4$ |
$4$ |
$3$ |
$3/4$ |
$3/4$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.2.8a |
$2$ |
$4$ |
$2$ |
$8$ |
$2$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$3$ |
$12$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$8$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.2.10a |
$2$ |
$4$ |
$2$ |
$8$ |
$2$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$10$ |
$3$ |
$14$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4]$ |
$[4]$ |
$\langle2\rangle$ |
$(4)$ |
$x^2 + (b_{7} \pi^4 + b_{5} \pi^3) x + c_{8} \pi^5 + \pi$ |
$4$ |
$14$ |
$16$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.4.4a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$4$ |
$3$ |
$6$ |
$\Q_{2}(\sqrt{2})$ |
$[\frac{4}{3}, \frac{4}{3}, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$1$ |
$1$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.4.6a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$6$ |
$3$ |
$8$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$2$ |
$3$ |
$2$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.4.8a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$8$ |
$3$ |
$10$ |
$\Q_{2}(\sqrt{2})$ |
$[\frac{8}{3}, \frac{8}{3}, 3]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + b_{6} \pi^2 x^2 + a_{5} \pi^2 x + \pi$ |
$1$ |
$2$ |
$2$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.4.8b |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$8$ |
$3$ |
$10$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$4$ |
$4$ |
$2$ |
$1$ |
$1$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.10a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$10$ |
$3$ |
$12$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{19}{6}, \frac{19}{6}]$ |
$[\frac{7}{3}, \frac{7}{3}]$ |
$\langle\frac{7}{6}, \frac{7}{4}\rangle$ |
$(\frac{7}{3}, \frac{7}{3})$ |
$x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ |
$1$ |
$2$ |
$4$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.4.10b |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$10$ |
$3$ |
$12$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$4$ |
$10$ |
$4$ |
$2$ |
$2$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.12a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$12$ |
$3$ |
$14$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}, \frac{7}{2}]$ |
$[3, 3]$ |
$\langle\frac{3}{2}, \frac{9}{4}\rangle$ |
$(3, 3)$ |
$x^4 + b_{11} \pi^3 x^3 + (b_{10} \pi^3 + b_{6} \pi^2) x^2 + a_{9} \pi^3 x + c_{12} \pi^4 + \pi$ |
$2$ |
$6$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.4.12b |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$12$ |
$3$ |
$14$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3, 4]$ |
$[1, 4]$ |
$\langle\frac{1}{2}, \frac{9}{4}\rangle$ |
$(1, 7)$ |
$x^4 + (b_{15} \pi^4 + b_{11} \pi^3) x^3 + a_{2} \pi x^2 + (b_{13} \pi^4 + a_{9} \pi^3) x + c_{16} \pi^5 + c_{4} \pi^2 + \pi$ |
$4$ |
$20$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.13a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$13$ |
$3$ |
$15$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3, \frac{17}{4}]$ |
$[1, \frac{9}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{2}\rangle$ |
$(1, 8)$ |
$x^4 + (b_{15} \pi^4 + b_{11} \pi^3) x^3 + (c_{18} \pi^5 + a_{2} \pi) x^2 + (b_{17} \pi^5 + b_{13} \pi^4) x + c_{4} \pi^2 + \pi$ |
$4$ |
$16$ |
$16$ |
$8$ |
$8$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.14a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$14$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{23}{6}, \frac{23}{6}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$4$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.4.14b |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$14$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}, 4]$ |
$[3, 4]$ |
$\langle\frac{3}{2}, \frac{11}{4}\rangle$ |
$(3, 5)$ |
$x^4 + (b_{15} \pi^4 + a_{11} \pi^3) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + b_{13} \pi^4 x + c_{16} \pi^5 + c_{12} \pi^4 + \pi$ |
$4$ |
$12$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.16a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$16$ |
$3$ |
$18$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[3, 5]$ |
$\langle\frac{3}{2}, \frac{13}{4}\rangle$ |
$(3, 7)$ |
$x^4 + (b_{19} \pi^5 + b_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{17} \pi^5 + a_{13} \pi^4) x + c_{20} \pi^6 + c_{12} \pi^4 + \pi$ |
$4$ |
$16$ |
$16$ |
$8$ |
$8$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.16b |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$16$ |
$3$ |
$18$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4, \frac{17}{4}]$ |
$[4, \frac{9}{2}]$ |
$\langle2, \frac{13}{4}\rangle$ |
$(4, 5)$ |
$x^4 + b_{15} \pi^4 x^3 + (c_{18} \pi^5 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{17} \pi^5 + a_{13} \pi^4) x + c_{16} \pi^5 + \pi$ |
$4$ |
$16$ |
$16$ |
$8$ |
$8$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.17a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$17$ |
$3$ |
$19$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}, \frac{19}{4}]$ |
$[3, \frac{11}{2}]$ |
$\langle\frac{3}{2}, \frac{7}{2}\rangle$ |
$(3, 8)$ |
$x^4 + (b_{19} \pi^5 + b_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{12} \pi^4 + \pi$ |
$4$ |
$32$ |
$32$ |
$16$ |
$16$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.18a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$18$ |
$3$ |
$20$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$32$ |
$32$ |
$16$ |
$16$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-1.4.19a |
$2$ |
$4$ |
$2$ |
$8$ |
$1$ |
$1$ |
$1$ |
$4$ |
$2$ |
$8$ |
$19$ |
$3$ |
$21$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4, 5]$ |
$[4, 6]$ |
$\langle2, 4\rangle$ |
$(4, 8)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5) x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{16} \pi^5 + \pi$ |
$4$ |
$76$ |
$64$ |
$32$ |
$32$ |
$100\%$ |
$2$ |
2.1.2.3a1.3-5.1.0a |
$2$ |
$5$ |
$2$ |
$10$ |
$5$ |
$1$ |
$5$ |
$1$ |
$2$ |
$2$ |
$0$ |
$3$ |
$10$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$1$ |
$1$ |
$1/10$ |
$1/10$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-1.5.4a |
$2$ |
$5$ |
$2$ |
$10$ |
$1$ |
$1$ |
$1$ |
$5$ |
$2$ |
$10$ |
$4$ |
$3$ |
$6$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^5 + \pi$ |
$1$ |
$1$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-6.1.0a |
$2$ |
$6$ |
$2$ |
$12$ |
$6$ |
$1$ |
$6$ |
$1$ |
$2$ |
$2$ |
$0$ |
$3$ |
$12$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$6$ |
$1$ |
$1$ |
$1/12$ |
$1/12$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-3.2.6a |
$2$ |
$6$ |
$2$ |
$12$ |
$3$ |
$1$ |
$3$ |
$2$ |
$2$ |
$4$ |
$6$ |
$3$ |
$12$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$6$ |
$6$ |
$7$ |
$7/6$ |
$7/6$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-3.2.12a |
$2$ |
$6$ |
$2$ |
$12$ |
$3$ |
$1$ |
$3$ |
$2$ |
$2$ |
$4$ |
$12$ |
$3$ |
$18$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$6$ |
$20$ |
$56$ |
$28/3$ |
$28/3$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-3.2.15a |
$2$ |
$6$ |
$2$ |
$12$ |
$3$ |
$1$ |
$3$ |
$2$ |
$2$ |
$4$ |
$15$ |
$3$ |
$21$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4]$ |
$[4]$ |
$\langle2\rangle$ |
$(4)$ |
$x^2 + (b_{7} \pi^4 + b_{5} \pi^3) x + c_{8} \pi^5 + \pi$ |
$6$ |
$28$ |
$64$ |
$32/3$ |
$32/3$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.3.4a |
$2$ |
$6$ |
$2$ |
$12$ |
$2$ |
$1$ |
$2$ |
$3$ |
$2$ |
$6$ |
$4$ |
$3$ |
$8$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^3 + d_{0} \pi$ |
$6$ |
$2$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-1.6.6a |
$2$ |
$6$ |
$2$ |
$12$ |
$1$ |
$1$ |
$1$ |
$6$ |
$2$ |
$12$ |
$6$ |
$3$ |
$8$ |
$\Q_{2}(\sqrt{2})$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3}]$ |
$\langle\frac{1}{6}\rangle$ |
$(1)$ |
$x^6 + c_{2} \pi x^2 + a_{1} \pi x + \pi$ |
$2$ |
$2$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.6.8a |
$2$ |
$6$ |
$2$ |
$12$ |
$1$ |
$1$ |
$1$ |
$6$ |
$2$ |
$12$ |
$8$ |
$3$ |
$10$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(3)$ |
$x^6 + b_{5} \pi x^5 + a_{3} \pi x^3 + c_{6} \pi^2 + \pi$ |
$2$ |
$4$ |
$2$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.6.10a |
$2$ |
$6$ |
$2$ |
$12$ |
$1$ |
$1$ |
$1$ |
$6$ |
$2$ |
$12$ |
$10$ |
$3$ |
$12$ |
$\Q_{2}(\sqrt{2})$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3}]$ |
$\langle\frac{5}{6}\rangle$ |
$(5)$ |
$x^6 + a_{5} \pi x^5 + c_{10} \pi^2 x^4 + b_{9} \pi^2 x^3 + b_{7} \pi^2 x + \pi$ |
$2$ |
$8$ |
$4$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.6.12a |
$2$ |
$6$ |
$2$ |
$12$ |
$1$ |
$1$ |
$1$ |
$6$ |
$2$ |
$12$ |
$12$ |
$3$ |
$14$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{19}{6}]$ |
$[\frac{7}{3}]$ |
$\langle\frac{7}{6}\rangle$ |
$(7)$ |
$x^6 + b_{11} \pi^2 x^5 + b_{9} \pi^2 x^3 + c_{14} \pi^3 x^2 + (b_{13} \pi^3 + a_{7} \pi^2) x + \pi$ |
$2$ |
$8$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.6.14a |
$2$ |
$6$ |
$2$ |
$12$ |
$1$ |
$1$ |
$1$ |
$6$ |
$2$ |
$12$ |
$14$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(9)$ |
$x^6 + (b_{17} \pi^3 + b_{11} \pi^2) x^5 + (b_{15} \pi^3 + a_{9} \pi^2) x^3 + b_{13} \pi^3 x + c_{18} \pi^4 + \pi$ |
$2$ |
$16$ |
$16$ |
$8$ |
$8$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.6.16a |
$2$ |
$6$ |
$2$ |
$12$ |
$1$ |
$1$ |
$1$ |
$6$ |
$2$ |
$12$ |
$16$ |
$3$ |
$18$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{23}{6}]$ |
$[\frac{11}{3}]$ |
$\langle\frac{11}{6}\rangle$ |
$(11)$ |
$x^6 + (b_{17} \pi^3 + a_{11} \pi^2) x^5 + c_{22} \pi^4 x^4 + (b_{21} \pi^4 + b_{15} \pi^3) x^3 + (b_{19} \pi^4 + b_{13} \pi^3) x + \pi$ |
$2$ |
$32$ |
$32$ |
$16$ |
$16$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-1.6.17a |
$2$ |
$6$ |
$2$ |
$12$ |
$1$ |
$1$ |
$1$ |
$6$ |
$2$ |
$12$ |
$17$ |
$3$ |
$19$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4]$ |
$[4]$ |
$\langle2\rangle$ |
$(12)$ |
$x^6 + (b_{23} \pi^4 + b_{17} \pi^3) x^5 + (b_{21} \pi^4 + b_{15} \pi^3) x^3 + (b_{19} \pi^4 + b_{13} \pi^3) x + c_{24} \pi^5 + \pi$ |
$2$ |
$72$ |
$64$ |
$32$ |
$32$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-7.1.0a |
$2$ |
$7$ |
$2$ |
$14$ |
$7$ |
$1$ |
$7$ |
$1$ |
$2$ |
$2$ |
$0$ |
$3$ |
$14$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$7$ |
$1$ |
$1$ |
$1/14$ |
$1/14$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-1.7.6a |
$2$ |
$7$ |
$2$ |
$14$ |
$1$ |
$1$ |
$1$ |
$7$ |
$2$ |
$14$ |
$6$ |
$3$ |
$8$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^7 + \pi$ |
$1$ |
$1$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-8.1.0a |
$2$ |
$8$ |
$2$ |
$16$ |
$8$ |
$1$ |
$8$ |
$1$ |
$2$ |
$2$ |
$0$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2})$ |
$[3]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$1$ |
$1$ |
$1/16$ |
$1/16$ |
$100\%$ |
$0$ |
2.1.2.3a1.3-4.2.8a |
$2$ |
$8$ |
$2$ |
$16$ |
$4$ |
$1$ |
$4$ |
$2$ |
$2$ |
$4$ |
$8$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$8$ |
$10$ |
$15$ |
$15/8$ |
$15/8$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-4.2.16a |
$2$ |
$8$ |
$2$ |
$16$ |
$4$ |
$1$ |
$4$ |
$2$ |
$2$ |
$4$ |
$16$ |
$3$ |
$24$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$8$ |
$68$ |
$240$ |
$30$ |
$30$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-4.2.20a |
$2$ |
$8$ |
$2$ |
$16$ |
$4$ |
$1$ |
$4$ |
$2$ |
$2$ |
$4$ |
$20$ |
$3$ |
$28$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4]$ |
$[4]$ |
$\langle2\rangle$ |
$(4)$ |
$x^2 + (b_{7} \pi^4 + b_{5} \pi^3) x + c_{8} \pi^5 + \pi$ |
$8$ |
$80$ |
$256$ |
$32$ |
$32$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.4.8a |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$8$ |
$3$ |
$12$ |
$\Q_{2}(\sqrt{2})$ |
$[\frac{4}{3}, \frac{4}{3}, 3]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + a_{1} \pi x + \pi$ |
$2$ |
$2$ |
$3$ |
$3/4$ |
$3/4$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.4.12a |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$12$ |
$3$ |
$16$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 2, 3]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + a_{3} \pi x^3 + b_{2} \pi x^2 + c_{4} \pi^2 + \pi$ |
$8$ |
$12$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.4.16a |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$16$ |
$3$ |
$20$ |
$\Q_{2}(\sqrt{2})$ |
$[\frac{8}{3}, \frac{8}{3}, 3]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + b_{6} \pi^2 x^2 + a_{5} \pi^2 x + \pi$ |
$2$ |
$7$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.1.2.3a1.3-2.4.16b |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$16$ |
$3$ |
$20$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$8$ |
$33$ |
$36$ |
$9$ |
$9$ |
$100\%$ |
$2$ |