$x^{4} + b_{6} \pi^{2} x^{2} + a_{5} \pi^{2} x + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.8.20c1.3 |
$x^{8} + 4 x^{7} + 4 x^{5} + 4 x^{2} + 2$ |
$S_4\times C_2$ (as 8T24) |
$48$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\ ]^{2}_{3}$ |
$[\ ]^{2}_{3}$ |
$[13, 10, 8, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.20c1.5 |
$x^{8} + 4 x^{5} + 4 x^{4} + 4 x^{2} + 2$ |
$S_4\times C_2$ (as 8T24) |
$48$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\ ]^{2}_{3}$ |
$[\ ]^{2}_{3}$ |
$[13, 10, 8, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
Download
displayed columns for
results