These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.2.4.22a1.49 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_4\times C_2$ (as 8T2) |
$8$ |
$8$ |
$[3, 4]^{2}$ |
$[2,3]^{2}$ |
$[\ ]$ |
$[\ ]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.50 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 16 x + 2$ |
$C_4\times C_2$ (as 8T2) |
$8$ |
$8$ |
$[3, 4]^{2}$ |
$[2,3]^{2}$ |
$[\ ]$ |
$[\ ]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.51 |
$( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 4]^{2}$ |
$[1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.52 |
$( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 16 x + 2$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 4]^{2}$ |
$[1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.53 |
$( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_4\times C_2$ (as 8T2) |
$8$ |
$8$ |
$[3, 4]^{2}$ |
$[2,3]^{2}$ |
$[\ ]$ |
$[\ ]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.54 |
$( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 16 x + 2$ |
$C_4\times C_2$ (as 8T2) |
$8$ |
$8$ |
$[3, 4]^{2}$ |
$[2,3]^{2}$ |
$[\ ]$ |
$[\ ]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.55 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T31) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.56 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 16 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T31) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.57 |
$( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T31) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.58 |
$( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 16 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T31) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.59 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$D_4\times C_2$ (as 8T9) |
$16$ |
$4$ |
$[2, 3, 4]^{2}$ |
$[1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.60 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 16 x + 2$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 4]^{2}$ |
$[1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.61 |
$( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 4]^{2}$ |
$[1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.62 |
$( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 16 x + 2$ |
$D_4\times C_2$ (as 8T9) |
$16$ |
$4$ |
$[2, 3, 4]^{2}$ |
$[1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |