Properties

Label 2.1.2.3a1.3-1.5.4a
Base 2.1.2.3a1.3
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{5} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $5$
Base field: $\Q_{2}(\sqrt{2})$
Ramification index $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[3]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $F_{5}\times C_2$
Hidden Artin slopes: $[\ ]^{4}$
Indices of inseparability: $[10,0]$
Associated inertia: $[4,1]$
Jump Set: $[5,15]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.10.19a1.9 $x^{10} + 4 x^{5} + 2$ $F_{5}\times C_2$ (as 10T5) $40$ $2$ $[3]_{5}^{4}$ $[2]_{5}^{4}$ $[\ ]^{4}$ $[\ ]^{4}$ $[10, 0]$ $[4, 1]$ $z^8 + z^6 + 1,z + 1$ $[5, 15]$
  displayed columns for results