Properties

Label 2.1.2.3a1.3-3.1.0a
Base 2.1.2.3a1.3
Degree \(3\)
e \(1\)
f \(3\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $2$
Degree: $3$
Base field: $\Q_{2}(\sqrt{2})$
Ramification index $e$: $1$
Residue field degree $f$: $3$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[3]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/6$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_6$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[2,0]$
Associated inertia: $[1]$
Jump Set: $[1,3]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.3.2.9a1.5 $( x^{3} + x + 1 )^{2} + 4 ( x^{3} + x + 1 ) + 2$ $C_6$ (as 6T1) $6$ $6$ $[3]^{3}$ $[2]^{3}$ $[\ ]$ $[\ ]$ $[2, 0]$ $[1]$ $z + (t^2 + t + 1)$ $[1, 3]$
  displayed columns for results