These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.12.30b1.81 |
$x^{12} + 4 x^{9} + 4 x^{7} + 4 x^{2} + 2$ |
$C_2^4:S_4$ (as 12T136) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30b1.82 |
$x^{12} + 4 x^{9} + 4 x^{7} + 12 x^{2} + 2$ |
$C_2^4:S_4$ (as 12T136) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30b1.93 |
$x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{2} + 2$ |
$C_2^3:S_4$ (as 12T109) |
$192$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30b1.94 |
$x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{9} + 4 x^{7} + 12 x^{2} + 2$ |
$C_2^3:S_4$ (as 12T108) |
$192$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30b1.97 |
$x^{12} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ |
$C_2^3:S_4$ (as 12T109) |
$192$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30b1.98 |
$x^{12} + 4 x^{7} + 4 x^{6} + 12 x^{2} + 2$ |
$C_2^3:S_4$ (as 12T108) |
$192$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30b1.109 |
$x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ |
$C_2^4:S_4$ (as 12T136) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30b1.110 |
$x^{12} + 4 x^{11} + 4 x^{10} + 4 x^{7} + 4 x^{6} + 12 x^{2} + 2$ |
$C_2^4:S_4$ (as 12T136) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6}]^{2}$ |
$[19, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |