Properties

Label 2.1.2.3a1.3-8.1.0a
Base 2.1.2.3a1.3
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $2$
Degree: $8$
Base field: $\Q_{2}(\sqrt{2})$
Ramification index $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[3]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $8$
Mass: $1$
Absolute Mass: $1/16$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_8\times C_2$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[2,0]$
Associated inertia: $[1]$
Jump Set: $[1,3]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.8.2.24a1.41 $( x^{8} + x^{4} + x^{3} + x^{2} + 1 )^{2} + 4 ( x^{8} + x^{4} + x^{3} + x^{2} + 1 ) + 2$ $C_8\times C_2$ (as 16T5) $16$ $16$ $[3]^{8}$ $[2]^{8}$ $[\ ]$ $[\ ]$ $[2, 0]$ $[1]$ $z + t^4$ $[1, 3]$
  displayed columns for results