Properties

Label 2.1.2.3a1.3-1.2.4a
Base 2.1.2.3a1.3
Degree \(2\)
e \(2\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + \left(b_{5} \pi^{3} + a_{3} \pi^{2}\right) x + c_{6} \pi^{4} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: $\Q_{2}(\sqrt{2})$
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[3,\frac{7}{2}]$
Swan slopes: $[3]$
Means: $\langle\frac{3}{2}\rangle$
Rams: $(3)$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $2$
Absolute Mass: $1$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $D_{4}$
Hidden Artin slopes: $[2]$
Indices of inseparability: $[7,4,0]$
Associated inertia: $[1,1]$
Jump Set: $[1,3,7]$

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.4.10a1.1 $x^{4} + 4 x^{3} + 2$ $D_{4}$ (as 4T3) $8$ $2$ $[2, 3, \frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[2]$ $[1]$ $[7, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.1.4.10a1.2 $x^{4} + 4 x^{3} + 8 x^{2} + 2$ $D_{4}$ (as 4T3) $8$ $2$ $[2, 3, \frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[2]$ $[1]$ $[7, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
  displayed columns for results