| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.97.at |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$79$ |
$[79, 9243, 911344, 88520211, 8587296919, 832972061376, 80798289754471, 7837433689152483, 760231059943493488, 73742412704789237643]$ |
$79$ |
$[79, 9243, 911344, 88520211, 8587296919, 832972061376, 80798289754471, 7837433689152483, 760231059943493488, 73742412704789237643]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.97.as |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$80$ |
$[80, 9280, 912080, 88531200, 8587432400, 832973477440, 80798302045520, 7837433767756800, 760231060071363920, 73742412698177358400]$ |
$80$ |
$[80, 9280, 912080, 88531200, 8587432400, 832973477440, 80798302045520, 7837433767756800, 760231060071363920, 73742412698177358400]$ |
$4$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.97.ar |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$81$ |
$[81, 9315, 912708, 88539075, 8587503441, 832973829120, 80798299660593, 7837433675532675, 760231058561511876, 73742412680038815075]$ |
$81$ |
$[81, 9315, 912708, 88539075, 8587503441, 832973829120, 80798299660593, 7837433675532675, 760231058561511876, 73742412680038815075]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.97.aq |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$82$ |
$[82, 9348, 913234, 88544256, 8587525522, 832973516676, 80798290695442, 7837433547214848, 760231057296890578, 73742412672344756868]$ |
$82$ |
$[82, 9348, 913234, 88544256, 8587525522, 832973516676, 80798290695442, 7837433547214848, 760231057296890578, 73742412672344756868]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-33}) \) |
$C_2$ |
simple |
| 1.97.ap |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$83$ |
$[83, 9379, 913664, 88547139, 8587512083, 832972850176, 80798280489779, 7837433452563075, 760231056914225408, 73742412677143675939]$ |
$83$ |
$[83, 9379, 913664, 88547139, 8587512083, 832972850176, 80798280489779, 7837433452563075, 760231056914225408, 73742412677143675939]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.97.ao |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$84$ |
$[84, 9408, 914004, 88548096, 8587474644, 832972061376, 80798272232916, 7837433417468928, 760231057365636948, 73742412688607909568]$ |
$84$ |
$[84, 9408, 914004, 88548096, 8587474644, 832972061376, 80798272232916, 7837433417468928, 760231057365636948, 73742412688607909568]$ |
$8$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.97.an |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$85$ |
$[85, 9435, 914260, 88547475, 8587422925, 832971314880, 80798267488765, 7837433440450275, 760231058301485140, 73742412699833673675]$ |
$85$ |
$[85, 9435, 914260, 88547475, 8587422925, 832971314880, 80798267488765, 7837433440450275, 760231058301485140, 73742412699833673675]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.97.am |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$86$ |
$[86, 9460, 914438, 88545600, 8587364966, 832970718580, 80798266645238, 7837433505158400, 760231059313731446, 73742412706057021300]$ |
$86$ |
$[86, 9460, 914438, 88545600, 8587364966, 832970718580, 80798266645238, 7837433505158400, 760231059313731446, 73742412706057021300]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-61}) \) |
$C_2$ |
simple |
| 1.97.al |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$87$ |
$[87, 9483, 914544, 88542771, 8587307247, 832970333376, 80798269293087, 7837433589482403, 760231060073672688, 73742412705577780443]$ |
$87$ |
$[87, 9483, 914544, 88542771, 8587307247, 832970333376, 80798269293087, 7837433589482403, 760231060073672688, 73742412705577780443]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.97.ak |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$88$ |
$[88, 9504, 914584, 88539264, 8587254808, 832970182176, 80798274539224, 7837433671795200, 760231060392819928, 73742412699365804064]$ |
$88$ |
$[88, 9504, 914584, 88539264, 8587254808, 832970182176, 80798274539224, 7837433671795200, 760231060392819928, 73742412699365804064]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.97.aj |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$89$ |
$[89, 9523, 914564, 88535331, 8587211369, 832970258176, 80798281259561, 7837433734845123, 760231060230978308, 73742412690055132243]$ |
$89$ |
$[89, 9523, 914564, 88535331, 8587211369, 832970258176, 80798281259561, 7837433734845123, 760231060230978308, 73742412690055132243]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.97.ai |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$90$ |
$[90, 9540, 914490, 88531200, 8587179450, 832970532420, 80798288296410, 7837433767756800, 760231059671229210, 73742412680808293700]$ |
$90$ |
$[90, 9540, 914490, 88531200, 8587179450, 832970532420, 80798288296410, 7837433767756800, 760231059671229210, 73742412680808293700]$ |
$9$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.97.ah |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$91$ |
$[91, 9555, 914368, 88527075, 8587160491, 832970960640, 80798294605483, 7837433766564675, 760231058877524416, 73742412674351332275]$ |
$91$ |
$[91, 9555, 914368, 88527075, 8587160491, 832970960640, 80798294605483, 7837433766564675, 760231058877524416, 73742412674351332275]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-339}) \) |
$C_2$ |
simple |
| 1.97.ag |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$92$ |
$[92, 9568, 914204, 88523136, 8587154972, 832971489376, 80798299357532, 7837433733662208, 760231058046973148, 73742412672336604768]$ |
$92$ |
$[92, 9568, 914204, 88523136, 8587154972, 832971489376, 80798299357532, 7837433733662208, 760231058046973148, 73742412672336604768]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.97.af |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$93$ |
$[93, 9579, 914004, 88519539, 8587162533, 832972061376, 80798301999669, 7837433676509475, 760231057365636948, 73742412675081330939]$ |
$93$ |
$[93, 9579, 914004, 88519539, 8587162533, 832972061376, 80798301999669, 7837433676509475, 760231057365636948, 73742412675081330939]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.97.ae |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$94$ |
$[94, 9588, 913774, 88516416, 8587182094, 832972620276, 80798302281406, 7837433605901568, 760231056973744318, 73742412681651655668]$ |
$94$ |
$[94, 9588, 913774, 88516416, 8587182094, 832972620276, 80798302281406, 7837433605901568, 760231056973744318, 73742412681651655668]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.97.ad |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$95$ |
$[95, 9595, 913520, 88513875, 8587211975, 832973114560, 80798300250455, 7837433534059875, 760231056943696880, 73742412690210978475]$ |
$95$ |
$[95, 9595, 913520, 88513875, 8587211975, 832973114560, 80798300250455, 7837433534059875, 760231056943696880, 73742412690210978475]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-379}) \) |
$C_2$ |
simple |
| 1.97.ac |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$96$ |
$[96, 9600, 913248, 88512000, 8587250016, 832973500800, 80798296223328, 7837433472768000, 760231057272061536, 73742412698523888000]$ |
$96$ |
$[96, 9600, 913248, 88512000, 8587250016, 832973500800, 80798296223328, 7837433472768000, 760231057272061536, 73742412698523888000]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.97.ab |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$97$ |
$[97, 9603, 912964, 88510851, 8587293697, 832973746176, 80798290735777, 7837433431733763, 760231057884928708, 73742412704499579843]$ |
$97$ |
$[97, 9603, 912964, 88510851, 8587293697, 832973746176, 80798290735777, 7837433431733763, 760231057884928708, 73742412704499579843]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.97.a |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 97 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$98$ |
$[98, 9604, 912674, 88510464, 8587340258, 832973830276, 80798284478114, 7837433417318400, 760231058654565218, 73742412706667506564]$ |
$98$ |
$[98, 9604, 912674, 88510464, 8587340258, 832973830276, 80798284478114, 7837433417318400, 760231058654565218, 73742412706667506564]$ |
$4$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-97}) \) |
$C_2$ |
simple |
| 1.97.b |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$99$ |
$[99, 9603, 912384, 88510851, 8587386819, 832973746176, 80798278220451, 7837433431733763, 760231059424201728, 73742412704499579843]$ |
$99$ |
$[99, 9603, 912384, 88510851, 8587386819, 832973746176, 80798278220451, 7837433431733763, 760231059424201728, 73742412704499579843]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.97.c |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$100$ |
$[100, 9600, 912100, 88512000, 8587430500, 832973500800, 80798272732900, 7837433472768000, 760231060037068900, 73742412698523888000]$ |
$100$ |
$[100, 9600, 912100, 88512000, 8587430500, 832973500800, 80798272732900, 7837433472768000, 760231060037068900, 73742412698523888000]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.97.d |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$101$ |
$[101, 9595, 911828, 88513875, 8587468541, 832973114560, 80798268705773, 7837433534059875, 760231060365433556, 73742412690210978475]$ |
$101$ |
$[101, 9595, 911828, 88513875, 8587468541, 832973114560, 80798268705773, 7837433534059875, 760231060365433556, 73742412690210978475]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-379}) \) |
$C_2$ |
simple |
| 1.97.e |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$102$ |
$[102, 9588, 911574, 88516416, 8587498422, 832972620276, 80798266674822, 7837433605901568, 760231060335386118, 73742412681651655668]$ |
$102$ |
$[102, 9588, 911574, 88516416, 8587498422, 832972620276, 80798266674822, 7837433605901568, 760231060335386118, 73742412681651655668]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-93}) \) |
$C_2$ |
simple |
| 1.97.f |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$103$ |
$[103, 9579, 911344, 88519539, 8587517983, 832972061376, 80798266956559, 7837433676509475, 760231059943493488, 73742412675081330939]$ |
$103$ |
$[103, 9579, 911344, 88519539, 8587517983, 832972061376, 80798266956559, 7837433676509475, 760231059943493488, 73742412675081330939]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.97.g |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$104$ |
$[104, 9568, 911144, 88523136, 8587525544, 832971489376, 80798269598696, 7837433733662208, 760231059262157288, 73742412672336604768]$ |
$104$ |
$[104, 9568, 911144, 88523136, 8587525544, 832971489376, 80798269598696, 7837433733662208, 760231059262157288, 73742412672336604768]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.97.h |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$105$ |
$[105, 9555, 910980, 88527075, 8587520025, 832970960640, 80798274350745, 7837433766564675, 760231058431606020, 73742412674351332275]$ |
$105$ |
$[105, 9555, 910980, 88527075, 8587520025, 832970960640, 80798274350745, 7837433766564675, 760231058431606020, 73742412674351332275]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-339}) \) |
$C_2$ |
simple |
| 1.97.i |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$106$ |
$[106, 9540, 910858, 88531200, 8587501066, 832970532420, 80798280659818, 7837433767756800, 760231057637901226, 73742412680808293700]$ |
$106$ |
$[106, 9540, 910858, 88531200, 8587501066, 832970532420, 80798280659818, 7837433767756800, 760231057637901226, 73742412680808293700]$ |
$9$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.97.j |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$107$ |
$[107, 9523, 910784, 88535331, 8587469147, 832970258176, 80798287696667, 7837433734845123, 760231057078152128, 73742412690055132243]$ |
$107$ |
$[107, 9523, 910784, 88535331, 8587469147, 832970258176, 80798287696667, 7837433734845123, 760231057078152128, 73742412690055132243]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.97.k |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$108$ |
$[108, 9504, 910764, 88539264, 8587425708, 832970182176, 80798294417004, 7837433671795200, 760231056916310508, 73742412699365804064]$ |
$108$ |
$[108, 9504, 910764, 88539264, 8587425708, 832970182176, 80798294417004, 7837433671795200, 760231056916310508, 73742412699365804064]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.97.l |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$109$ |
$[109, 9483, 910804, 88542771, 8587373269, 832970333376, 80798299663141, 7837433589482403, 760231057235457748, 73742412705577780443]$ |
$109$ |
$[109, 9483, 910804, 88542771, 8587373269, 832970333376, 80798299663141, 7837433589482403, 760231057235457748, 73742412705577780443]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.97.m |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$110$ |
$[110, 9460, 910910, 88545600, 8587315550, 832970718580, 80798302310990, 7837433505158400, 760231057995398990, 73742412706057021300]$ |
$110$ |
$[110, 9460, 910910, 88545600, 8587315550, 832970718580, 80798302310990, 7837433505158400, 760231057995398990, 73742412706057021300]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-61}) \) |
$C_2$ |
simple |
| 1.97.n |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$111$ |
$[111, 9435, 911088, 88547475, 8587257591, 832971314880, 80798301467463, 7837433440450275, 760231059007645296, 73742412699833673675]$ |
$111$ |
$[111, 9435, 911088, 88547475, 8587257591, 832971314880, 80798301467463, 7837433440450275, 760231059007645296, 73742412699833673675]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.97.o |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$112$ |
$[112, 9408, 911344, 88548096, 8587205872, 832972061376, 80798296723312, 7837433417468928, 760231059943493488, 73742412688607909568]$ |
$112$ |
$[112, 9408, 911344, 88548096, 8587205872, 832972061376, 80798296723312, 7837433417468928, 760231059943493488, 73742412688607909568]$ |
$8$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.97.p |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$113$ |
$[113, 9379, 911684, 88547139, 8587168433, 832972850176, 80798288466449, 7837433452563075, 760231060394905028, 73742412677143675939]$ |
$113$ |
$[113, 9379, 911684, 88547139, 8587168433, 832972850176, 80798288466449, 7837433452563075, 760231060394905028, 73742412677143675939]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.97.q |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$114$ |
$[114, 9348, 912114, 88544256, 8587154994, 832973516676, 80798278260786, 7837433547214848, 760231060012239858, 73742412672344756868]$ |
$114$ |
$[114, 9348, 912114, 88544256, 8587154994, 832973516676, 80798278260786, 7837433547214848, 760231060012239858, 73742412672344756868]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-33}) \) |
$C_2$ |
simple |
| 1.97.r |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$115$ |
$[115, 9315, 912640, 88539075, 8587177075, 832973829120, 80798269295635, 7837433675532675, 760231058747618560, 73742412680038815075]$ |
$115$ |
$[115, 9315, 912640, 88539075, 8587177075, 832973829120, 80798269295635, 7837433675532675, 760231058747618560, 73742412680038815075]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.97.s |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$116$ |
$[116, 9280, 913268, 88531200, 8587248116, 832973477440, 80798266910708, 7837433767756800, 760231057237766516, 73742412698177358400]$ |
$116$ |
$[116, 9280, 913268, 88531200, 8587248116, 832973477440, 80798266910708, 7837433767756800, 760231057237766516, 73742412698177358400]$ |
$4$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.97.t |
$1$ |
$\F_{97}$ |
$97$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 97 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$117$ |
$[117, 9243, 914004, 88520211, 8587383597, 832972061376, 80798279201757, 7837433689152483, 760231057365636948, 73742412704789237643]$ |
$117$ |
$[117, 9243, 914004, 88520211, 8587383597, 832972061376, 80798279201757, 7837433689152483, 760231057365636948, 73742412704789237643]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |