Normalized defining polynomial
\( x^{8} - 4x^{4} + 5 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(2097152000\)
\(\medspace = 2^{24}\cdot 5^{3}\)
|
| |
| Root discriminant: | \(14.63\) |
| |
| Galois root discriminant: | $2^{25/8}5^{3/4}\approx 29.170658948868436$ | ||
| Ramified primes: |
\(2\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-1}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( a^{4} - 2 \)
(order $4$)
|
| |
| Fundamental units: |
$a^{6}-a^{4}+a^{3}-2a^{2}-a+3$, $a^{7}-a^{5}-a^{4}-2a^{3}+a^{2}+2a+1$, $a^{4}+a^{3}+a^{2}+a-1$
|
| |
| Regulator: | \( 54.7742920402 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 54.7742920402 \cdot 1}{4\cdot\sqrt{2097152000}}\cr\approx \mathstrut & 0.466037968678 \end{aligned}\]
Galois group
$C_4\wr C_2$ (as 8T17):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.1280.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }$ | R | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.24c1.29 | $x^{8} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 2$ | $8$ | $1$ | $24$ | $C_4\wr C_2$ | $$[2, 2, 3, 4]^{2}$$ |
|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *32 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.20.2t1.a.a | $1$ | $ 2^{2} \cdot 5 $ | \(\Q(\sqrt{-5}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *32 | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.40.4t1.a.a | $1$ | $ 2^{3} \cdot 5 $ | 4.4.8000.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.40.4t1.a.b | $1$ | $ 2^{3} \cdot 5 $ | 4.4.8000.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.40.4t1.b.a | $1$ | $ 2^{3} \cdot 5 $ | 4.0.8000.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.40.4t1.b.b | $1$ | $ 2^{3} \cdot 5 $ | 4.0.8000.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 2.400.4t3.c.a | $2$ | $ 2^{4} \cdot 5^{2}$ | 4.0.8000.1 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| *32 | 2.320.4t3.a.a | $2$ | $ 2^{6} \cdot 5 $ | 4.0.1280.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
| *32 | 2.1280.8t17.a.a | $2$ | $ 2^{8} \cdot 5 $ | 8.0.2097152000.3 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |
| 2.6400.8t17.a.a | $2$ | $ 2^{8} \cdot 5^{2}$ | 8.0.2097152000.3 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ | |
| *32 | 2.1280.8t17.a.b | $2$ | $ 2^{8} \cdot 5 $ | 8.0.2097152000.3 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |
| 2.6400.8t17.a.b | $2$ | $ 2^{8} \cdot 5^{2}$ | 8.0.2097152000.3 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |