Defining polynomial
\(x^{4} + 5\)
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $4$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $3$ |
Discriminant root field: | $\Q_{5}(\sqrt{5})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: | $C_4$ |
This field is Galois and abelian over $\Q_{5}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | $[1]$ |
Roots of unity: | $20 = (5 - 1) \cdot 5$ |
Intermediate fields
$\Q_{5}(\sqrt{5})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{5}$ |
Relative Eisenstein polynomial: |
\( x^{4} + 5 \)
|
Ramification polygon
Residual polynomials: | $z^{3} + 4 z^{2} + z + 4$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $4$ |
Galois group: | $C_4$ (as 4T1) |
Inertia group: | $C_4$ (as 4T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[]$ |
Galois mean slope: | $0.75$ |
Galois splitting model: | $x^{4} - x^{3} + x^{2} - x + 1$ |