Properties

Label 2.400.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $400$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.8000.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.4.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{5})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 4x^{2} + 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 59 + 54\cdot 101 + 68\cdot 101^{2} + 71\cdot 101^{3} + 95\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 77 + 46\cdot 101 + 82\cdot 101^{2} + 97\cdot 101^{3} + 39\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 80 + 17\cdot 101 + 5\cdot 101^{2} + 87\cdot 101^{3} + 82\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 89 + 82\cdot 101 + 45\cdot 101^{2} + 46\cdot 101^{3} + 84\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$