Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.8000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.4.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(i, \sqrt{5})\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} - 2x^{3} + 4x^{2} + 2x + 1 \)
|
The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 59 + 54\cdot 101 + 68\cdot 101^{2} + 71\cdot 101^{3} + 95\cdot 101^{4} +O(101^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 77 + 46\cdot 101 + 82\cdot 101^{2} + 97\cdot 101^{3} + 39\cdot 101^{4} +O(101^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 80 + 17\cdot 101 + 5\cdot 101^{2} + 87\cdot 101^{3} + 82\cdot 101^{4} +O(101^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 89 + 82\cdot 101 + 45\cdot 101^{2} + 46\cdot 101^{3} + 84\cdot 101^{4} +O(101^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ | |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$2$ | $2$ | $(1,4)$ | $0$ | |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |