Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.1280.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.20.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(i, \sqrt{5})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 4x^{2} + 5 \) . |
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 14 + 9\cdot 61 + 3\cdot 61^{2} + 36\cdot 61^{3} + 46\cdot 61^{4} +O(61^{5})\) |
$r_{ 2 }$ | $=$ | \( 28 + 17\cdot 61 + 46\cdot 61^{2} + 35\cdot 61^{3} + 4\cdot 61^{4} +O(61^{5})\) |
$r_{ 3 }$ | $=$ | \( 33 + 43\cdot 61 + 14\cdot 61^{2} + 25\cdot 61^{3} + 56\cdot 61^{4} +O(61^{5})\) |
$r_{ 4 }$ | $=$ | \( 47 + 51\cdot 61 + 57\cdot 61^{2} + 24\cdot 61^{3} + 14\cdot 61^{4} +O(61^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.