Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} + 16 x^{13} - 65 x^{12} + 86 x^{11} - 8 x^{10} - 212 x^{9} + 348 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(11574317056000000000000\)
\(\medspace = 2^{24}\cdot 5^{12}\cdot 41^{4}\)
|
| |
Root discriminant: | \(23.93\) |
| |
Galois root discriminant: | $2^{7/4}5^{3/4}41^{1/2}\approx 72.01482738072863$ | ||
Ramified primes: |
\(2\), \(5\), \(41\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{11}a^{11}-\frac{5}{11}a^{10}-\frac{1}{11}a^{8}-\frac{2}{11}a^{7}+\frac{1}{11}a^{6}-\frac{3}{11}a^{5}-\frac{2}{11}a^{2}-\frac{2}{11}a-\frac{2}{11}$, $\frac{1}{55}a^{12}+\frac{2}{55}a^{11}+\frac{4}{11}a^{10}+\frac{2}{11}a^{9}-\frac{9}{55}a^{8}+\frac{4}{11}a^{7}+\frac{26}{55}a^{6}-\frac{2}{11}a^{5}+\frac{1}{5}a^{4}+\frac{4}{11}a^{3}-\frac{1}{11}a^{2}-\frac{27}{55}a-\frac{14}{55}$, $\frac{1}{55}a^{13}+\frac{1}{55}a^{11}-\frac{2}{11}a^{10}+\frac{26}{55}a^{9}-\frac{2}{55}a^{8}+\frac{16}{55}a^{7}-\frac{2}{5}a^{6}+\frac{21}{55}a^{5}-\frac{2}{55}a^{4}+\frac{2}{11}a^{3}+\frac{13}{55}a^{2}+\frac{3}{11}a+\frac{3}{55}$, $\frac{1}{605}a^{14}-\frac{1}{605}a^{12}+\frac{1}{605}a^{11}-\frac{199}{605}a^{10}-\frac{2}{55}a^{9}-\frac{146}{605}a^{8}+\frac{18}{605}a^{7}+\frac{259}{605}a^{6}-\frac{302}{605}a^{5}-\frac{232}{605}a^{4}-\frac{192}{605}a^{3}+\frac{43}{121}a^{2}-\frac{138}{605}a-\frac{2}{605}$, $\frac{1}{931824025}a^{15}-\frac{12546}{37272961}a^{14}-\frac{7066676}{931824025}a^{13}-\frac{1965153}{931824025}a^{12}-\frac{32283842}{931824025}a^{11}+\frac{364054533}{931824025}a^{10}-\frac{312510806}{931824025}a^{9}-\frac{398317166}{931824025}a^{8}+\frac{358158549}{931824025}a^{7}+\frac{246627554}{931824025}a^{6}-\frac{25466957}{931824025}a^{5}-\frac{180412516}{931824025}a^{4}-\frac{56657771}{186364805}a^{3}+\frac{141431517}{931824025}a^{2}-\frac{445897269}{931824025}a-\frac{159985174}{931824025}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{32567134}{186364805}a^{15}-\frac{127038416}{186364805}a^{14}+\frac{24081520}{37272961}a^{13}+\frac{518266347}{186364805}a^{12}-\frac{2046503794}{186364805}a^{11}+\frac{2642879436}{186364805}a^{10}-\frac{236457558}{186364805}a^{9}-\frac{6564096808}{186364805}a^{8}+\frac{10598840812}{186364805}a^{7}+\frac{4856597392}{186364805}a^{6}-\frac{1856533042}{16942255}a^{5}+\frac{10928061003}{186364805}a^{4}+\frac{3535436892}{186364805}a^{3}-\frac{894680760}{37272961}a^{2}+\frac{369430186}{186364805}a+\frac{142934691}{186364805}$, $\frac{13688693}{931824025}a^{15}-\frac{316782}{186364805}a^{14}-\frac{109973233}{931824025}a^{13}+\frac{280699941}{931824025}a^{12}+\frac{8725239}{931824025}a^{11}-\frac{1439648091}{931824025}a^{10}+\frac{2062090097}{931824025}a^{9}-\frac{1495803288}{931824025}a^{8}-\frac{4802275213}{931824025}a^{7}+\frac{11353594922}{931824025}a^{6}+\frac{6436393804}{931824025}a^{5}-\frac{14800836153}{931824025}a^{4}+\frac{563174251}{186364805}a^{3}+\frac{4713141161}{931824025}a^{2}-\frac{661447032}{931824025}a-\frac{896411047}{931824025}$, $\frac{9400111}{186364805}a^{15}-\frac{56988501}{186364805}a^{14}+\frac{101878496}{186364805}a^{13}+\frac{114546403}{186364805}a^{12}-\frac{939053691}{186364805}a^{11}+\frac{1838599112}{186364805}a^{10}-\frac{1071034972}{186364805}a^{9}-\frac{2409031259}{186364805}a^{8}+\frac{6961869063}{186364805}a^{7}-\frac{2905758929}{186364805}a^{6}-\frac{11631963403}{186364805}a^{5}+\frac{13046196417}{186364805}a^{4}+\frac{82324862}{186364805}a^{3}-\frac{5170109837}{186364805}a^{2}+\frac{967174404}{186364805}a+\frac{491614174}{186364805}$, $\frac{57110886}{931824025}a^{15}-\frac{12391901}{186364805}a^{14}-\frac{333048746}{931824025}a^{13}+\frac{113249672}{84711275}a^{12}-\frac{81860342}{84711275}a^{11}-\frac{4113367717}{931824025}a^{10}+\frac{8514258784}{931824025}a^{9}-\frac{8802189881}{931824025}a^{8}-\frac{12383611136}{931824025}a^{7}+\frac{46025972814}{931824025}a^{6}+\frac{3782123198}{931824025}a^{5}-\frac{60496070551}{931824025}a^{4}+\frac{5347031036}{186364805}a^{3}+\frac{1661723737}{84711275}a^{2}-\frac{11715808234}{931824025}a-\frac{2124783864}{931824025}$, $\frac{32567134}{186364805}a^{15}+\frac{127038416}{186364805}a^{14}-\frac{24081520}{37272961}a^{13}-\frac{518266347}{186364805}a^{12}+\frac{2046503794}{186364805}a^{11}-\frac{2642879436}{186364805}a^{10}+\frac{236457558}{186364805}a^{9}+\frac{6564096808}{186364805}a^{8}-\frac{10598840812}{186364805}a^{7}-\frac{4856597392}{186364805}a^{6}+\frac{1856533042}{16942255}a^{5}-\frac{10928061003}{186364805}a^{4}-\frac{3535436892}{186364805}a^{3}+\frac{894680760}{37272961}a^{2}-\frac{555794991}{186364805}a-\frac{142934691}{186364805}$, $a$, $\frac{57967508}{186364805}a^{15}-\frac{41341611}{37272961}a^{14}+\frac{152471226}{186364805}a^{13}+\frac{957057044}{186364805}a^{12}-\frac{3326364391}{186364805}a^{11}+\frac{3714859064}{186364805}a^{10}+\frac{555784126}{186364805}a^{9}-\frac{11401709283}{186364805}a^{8}+\frac{15374408821}{186364805}a^{7}+\frac{12571356012}{186364805}a^{6}-\frac{31677931512}{186364805}a^{5}+\frac{11327502627}{186364805}a^{4}+\frac{1706258795}{37272961}a^{3}-\frac{5811123317}{186364805}a^{2}-\frac{199591433}{186364805}a-\frac{231396762}{186364805}$, $\frac{15138248}{186364805}a^{15}-\frac{9828413}{37272961}a^{14}+\frac{28154001}{186364805}a^{13}+\frac{251829114}{186364805}a^{12}-\frac{796183331}{186364805}a^{11}+\frac{783809284}{186364805}a^{10}+\frac{285949421}{186364805}a^{9}-\frac{2926467413}{186364805}a^{8}+\frac{299966231}{16942255}a^{7}+\frac{3798269007}{186364805}a^{6}-\frac{7212948887}{186364805}a^{5}+\frac{2288137507}{186364805}a^{4}+\frac{604964064}{37272961}a^{3}-\frac{1697058692}{186364805}a^{2}-\frac{30583943}{16942255}a+\frac{443058923}{186364805}$, $\frac{228594726}{931824025}a^{15}-\frac{38435836}{37272961}a^{14}+\frac{1114936749}{931824025}a^{13}+\frac{3398657047}{931824025}a^{12}-\frac{15510919517}{931824025}a^{11}+\frac{22926361158}{931824025}a^{10}-\frac{7017200181}{931824025}a^{9}-\frac{46312650766}{931824025}a^{8}+\frac{89140130599}{931824025}a^{7}+\frac{1063798639}{84711275}a^{6}-\frac{156406780432}{931824025}a^{5}+\frac{122778169834}{931824025}a^{4}+\frac{70641854}{16942255}a^{3}-\frac{45547099408}{931824025}a^{2}+\frac{14765681006}{931824025}a+\frac{1373756301}{931824025}$, $\frac{186470496}{931824025}a^{15}-\frac{139264519}{186364805}a^{14}+\frac{608237484}{931824025}a^{13}+\frac{2985656227}{931824025}a^{12}-\frac{11249572932}{931824025}a^{11}+\frac{13869858498}{931824025}a^{10}-\frac{348513856}{931824025}a^{9}-\frac{37335380531}{931824025}a^{8}+\frac{465289769}{7701025}a^{7}+\frac{31526901539}{931824025}a^{6}-\frac{109725523202}{931824025}a^{5}+\frac{58377333539}{931824025}a^{4}+\frac{4598887962}{186364805}a^{3}-\frac{29977698203}{931824025}a^{2}+\frac{205395536}{84711275}a+\frac{2374703696}{931824025}$, $\frac{49118796}{931824025}a^{15}-\frac{10242362}{37272961}a^{14}+\frac{356866399}{931824025}a^{13}+\frac{795793422}{931824025}a^{12}-\frac{4316919217}{931824025}a^{11}+\frac{6869044143}{931824025}a^{10}-\frac{1536498131}{931824025}a^{9}-\frac{1301819281}{84711275}a^{8}+\frac{29348683049}{931824025}a^{7}-\frac{340726696}{931824025}a^{6}-\frac{58363752027}{931824025}a^{5}+\frac{4154192769}{84711275}a^{4}+\frac{3680498474}{186364805}a^{3}-\frac{32355324983}{931824025}a^{2}+\frac{6921426881}{931824025}a+\frac{3353268566}{931824025}$
|
| |
Regulator: | \( 223161.3908924072 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 223161.3908924072 \cdot 1}{2\cdot\sqrt{11574317056000000000000}}\cr\approx \mathstrut & 0.413809841584068 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.16400.1, \(\Q(\zeta_{20})^+\), 4.4.5125.1, 8.4.21516800000.4, 8.4.21516800000.1, 8.8.6724000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.4.24a29.1 | $x^{16} + 2 x^{14} + 6 x^{13} + 6 x^{12} + 6 x^{11} + 20 x^{10} + 26 x^{9} + 18 x^{8} + 26 x^{7} + 44 x^{6} + 36 x^{5} + 21 x^{4} + 24 x^{3} + 26 x^{2} + 14 x + 5$ | $4$ | $4$ | $24$ | 16T53 | $$[2, 2, 2]^{4}$$ |
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(41\)
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |