Properties

Label 2.4.4.24a29.1
Base \(\Q_{2}\)
Degree \(16\)
e \(4\)
f \(4\)
c \(24\)
Galois group $C_2^3:C_4$ (as 16T53)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + x + 1 )^{4} + \left(2 x^{2} + 2 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{2} + 2 x\right) ( x^{4} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $D_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2]$
Visible Swan slopes:$[1,1]$
Means:$\langle\frac{1}{2}, \frac{3}{4}\rangle$
Rams:$(1, 1)$
Jump set:$[1, 3, 6]$
Roots of unity:$60 = (2^{ 4 } - 1) \cdot 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-5})$, 2.4.1.0a1.1, 2.2.2.4a1.1, 2.2.2.4a1.2, 2.4.2.8a1.1, 2.4.2.8a5.2 x2, 2.2.4.12a6.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(2 t^{2} + 2 t\right) x^{3} + \left(2 t^{2} + 2 t\right) x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + (t^2 + t) z + (t^2 + t)$
Associated inertia:$1$
Indices of inseparability:$[3, 2, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_2^3:C_4$ (as 16T53)
Inertia group: Intransitive group isomorphic to $C_2^3$
Wild inertia group: $C_2^3$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2]$
Galois Swan slopes: $[1,1,1]$
Galois mean slope: $1.75$
Galois splitting model:$x^{16} - 2 x^{15} + 2 x^{14} - 2 x^{13} + 28 x^{12} - 62 x^{11} + 70 x^{10} - 30 x^{9} + 6 x^{8} - 30 x^{7} + 70 x^{6} - 62 x^{5} + 28 x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 1$