/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 4*x^15 + 4*x^14 + 16*x^13 - 65*x^12 + 86*x^11 - 8*x^10 - 212*x^9 + 348*x^8 + 138*x^7 - 688*x^6 + 392*x^5 + 164*x^4 - 198*x^3 + 8*x^2 + 22*x + 1, 16, 227, [8, 4], 11574317056000000000000, [2, 5, 41], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, 1/11*a^11 - 5/11*a^10 - 1/11*a^8 - 2/11*a^7 + 1/11*a^6 - 3/11*a^5 - 2/11*a^2 - 2/11*a - 2/11, 1/55*a^12 + 2/55*a^11 + 4/11*a^10 + 2/11*a^9 - 9/55*a^8 + 4/11*a^7 + 26/55*a^6 - 2/11*a^5 + 1/5*a^4 + 4/11*a^3 - 1/11*a^2 - 27/55*a - 14/55, 1/55*a^13 + 1/55*a^11 - 2/11*a^10 + 26/55*a^9 - 2/55*a^8 + 16/55*a^7 - 2/5*a^6 + 21/55*a^5 - 2/55*a^4 + 2/11*a^3 + 13/55*a^2 + 3/11*a + 3/55, 1/605*a^14 - 1/605*a^12 + 1/605*a^11 - 199/605*a^10 - 2/55*a^9 - 146/605*a^8 + 18/605*a^7 + 259/605*a^6 - 302/605*a^5 - 232/605*a^4 - 192/605*a^3 + 43/121*a^2 - 138/605*a - 2/605, 1/931824025*a^15 - 12546/37272961*a^14 - 7066676/931824025*a^13 - 1965153/931824025*a^12 - 32283842/931824025*a^11 + 364054533/931824025*a^10 - 312510806/931824025*a^9 - 398317166/931824025*a^8 + 358158549/931824025*a^7 + 246627554/931824025*a^6 - 25466957/931824025*a^5 - 180412516/931824025*a^4 - 56657771/186364805*a^3 + 141431517/931824025*a^2 - 445897269/931824025*a - 159985174/931824025], 0, 1, [], 1, [ (32567134)/(186364805)*a^(15) - (127038416)/(186364805)*a^(14) + (24081520)/(37272961)*a^(13) + (518266347)/(186364805)*a^(12) - (2046503794)/(186364805)*a^(11) + (2642879436)/(186364805)*a^(10) - (236457558)/(186364805)*a^(9) - (6564096808)/(186364805)*a^(8) + (10598840812)/(186364805)*a^(7) + (4856597392)/(186364805)*a^(6) - (1856533042)/(16942255)*a^(5) + (10928061003)/(186364805)*a^(4) + (3535436892)/(186364805)*a^(3) - (894680760)/(37272961)*a^(2) + (369430186)/(186364805)*a + (142934691)/(186364805) , (13688693)/(931824025)*a^(15) - (316782)/(186364805)*a^(14) - (109973233)/(931824025)*a^(13) + (280699941)/(931824025)*a^(12) + (8725239)/(931824025)*a^(11) - (1439648091)/(931824025)*a^(10) + (2062090097)/(931824025)*a^(9) - (1495803288)/(931824025)*a^(8) - (4802275213)/(931824025)*a^(7) + (11353594922)/(931824025)*a^(6) + (6436393804)/(931824025)*a^(5) - (14800836153)/(931824025)*a^(4) + (563174251)/(186364805)*a^(3) + (4713141161)/(931824025)*a^(2) - (661447032)/(931824025)*a - (896411047)/(931824025) , (9400111)/(186364805)*a^(15) - (56988501)/(186364805)*a^(14) + (101878496)/(186364805)*a^(13) + (114546403)/(186364805)*a^(12) - (939053691)/(186364805)*a^(11) + (1838599112)/(186364805)*a^(10) - (1071034972)/(186364805)*a^(9) - (2409031259)/(186364805)*a^(8) + (6961869063)/(186364805)*a^(7) - (2905758929)/(186364805)*a^(6) - (11631963403)/(186364805)*a^(5) + (13046196417)/(186364805)*a^(4) + (82324862)/(186364805)*a^(3) - (5170109837)/(186364805)*a^(2) + (967174404)/(186364805)*a + (491614174)/(186364805) , (57110886)/(931824025)*a^(15) - (12391901)/(186364805)*a^(14) - (333048746)/(931824025)*a^(13) + (113249672)/(84711275)*a^(12) - (81860342)/(84711275)*a^(11) - (4113367717)/(931824025)*a^(10) + (8514258784)/(931824025)*a^(9) - (8802189881)/(931824025)*a^(8) - (12383611136)/(931824025)*a^(7) + (46025972814)/(931824025)*a^(6) + (3782123198)/(931824025)*a^(5) - (60496070551)/(931824025)*a^(4) + (5347031036)/(186364805)*a^(3) + (1661723737)/(84711275)*a^(2) - (11715808234)/(931824025)*a - (2124783864)/(931824025) , -(32567134)/(186364805)*a^(15) + (127038416)/(186364805)*a^(14) - (24081520)/(37272961)*a^(13) - (518266347)/(186364805)*a^(12) + (2046503794)/(186364805)*a^(11) - (2642879436)/(186364805)*a^(10) + (236457558)/(186364805)*a^(9) + (6564096808)/(186364805)*a^(8) - (10598840812)/(186364805)*a^(7) - (4856597392)/(186364805)*a^(6) + (1856533042)/(16942255)*a^(5) - (10928061003)/(186364805)*a^(4) - (3535436892)/(186364805)*a^(3) + (894680760)/(37272961)*a^(2) - (555794991)/(186364805)*a - (142934691)/(186364805) , -a , (57967508)/(186364805)*a^(15) - (41341611)/(37272961)*a^(14) + (152471226)/(186364805)*a^(13) + (957057044)/(186364805)*a^(12) - (3326364391)/(186364805)*a^(11) + (3714859064)/(186364805)*a^(10) + (555784126)/(186364805)*a^(9) - (11401709283)/(186364805)*a^(8) + (15374408821)/(186364805)*a^(7) + (12571356012)/(186364805)*a^(6) - (31677931512)/(186364805)*a^(5) + (11327502627)/(186364805)*a^(4) + (1706258795)/(37272961)*a^(3) - (5811123317)/(186364805)*a^(2) - (199591433)/(186364805)*a - (231396762)/(186364805) , (15138248)/(186364805)*a^(15) - (9828413)/(37272961)*a^(14) + (28154001)/(186364805)*a^(13) + (251829114)/(186364805)*a^(12) - (796183331)/(186364805)*a^(11) + (783809284)/(186364805)*a^(10) + (285949421)/(186364805)*a^(9) - (2926467413)/(186364805)*a^(8) + (299966231)/(16942255)*a^(7) + (3798269007)/(186364805)*a^(6) - (7212948887)/(186364805)*a^(5) + (2288137507)/(186364805)*a^(4) + (604964064)/(37272961)*a^(3) - (1697058692)/(186364805)*a^(2) - (30583943)/(16942255)*a + (443058923)/(186364805) , (228594726)/(931824025)*a^(15) - (38435836)/(37272961)*a^(14) + (1114936749)/(931824025)*a^(13) + (3398657047)/(931824025)*a^(12) - (15510919517)/(931824025)*a^(11) + (22926361158)/(931824025)*a^(10) - (7017200181)/(931824025)*a^(9) - (46312650766)/(931824025)*a^(8) + (89140130599)/(931824025)*a^(7) + (1063798639)/(84711275)*a^(6) - (156406780432)/(931824025)*a^(5) + (122778169834)/(931824025)*a^(4) + (70641854)/(16942255)*a^(3) - (45547099408)/(931824025)*a^(2) + (14765681006)/(931824025)*a + (1373756301)/(931824025) , (186470496)/(931824025)*a^(15) - (139264519)/(186364805)*a^(14) + (608237484)/(931824025)*a^(13) + (2985656227)/(931824025)*a^(12) - (11249572932)/(931824025)*a^(11) + (13869858498)/(931824025)*a^(10) - (348513856)/(931824025)*a^(9) - (37335380531)/(931824025)*a^(8) + (465289769)/(7701025)*a^(7) + (31526901539)/(931824025)*a^(6) - (109725523202)/(931824025)*a^(5) + (58377333539)/(931824025)*a^(4) + (4598887962)/(186364805)*a^(3) - (29977698203)/(931824025)*a^(2) + (205395536)/(84711275)*a + (2374703696)/(931824025) , (49118796)/(931824025)*a^(15) - (10242362)/(37272961)*a^(14) + (356866399)/(931824025)*a^(13) + (795793422)/(931824025)*a^(12) - (4316919217)/(931824025)*a^(11) + (6869044143)/(931824025)*a^(10) - (1536498131)/(931824025)*a^(9) - (1301819281)/(84711275)*a^(8) + (29348683049)/(931824025)*a^(7) - (340726696)/(931824025)*a^(6) - (58363752027)/(931824025)*a^(5) + (4154192769)/(84711275)*a^(4) + (3680498474)/(186364805)*a^(3) - (32355324983)/(931824025)*a^(2) + (6921426881)/(931824025)*a + (3353268566)/(931824025) ], 223161.3908924072, [[x^2 - x - 1, 1], [x^4 - 13*x^2 + 41, 1], [x^4 - 5*x^2 + 5, 1], [x^4 - 2*x^3 - 6*x^2 + 7*x + 11, 1], [x^8 - 2*x^7 - 4*x^6 + 18*x^5 + 10*x^4 - 58*x^3 - 44*x^2 + 2*x + 1, 1], [x^8 - 2*x^7 - 8*x^6 + 14*x^5 + 34*x^4 - 50*x^3 - 80*x^2 + 150*x - 55, 1], [x^8 - 9*x^6 + 21*x^4 - 9*x^2 + 1, 1]]]