Show commands: Magma
Group invariants
Abstract group: | $C_2^5:C_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $227$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,16,2,15)(3,6,12,14)(4,5,11,13)(7,9,8,10)$, $(1,5)(2,6)(3,4)(7,8)(9,13)(10,14)(11,12)(15,16)$, $(5,14)(6,13)(7,16)(8,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: $((C_8 : C_2):C_2):C_2$ x 2, 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Low degree siblings
16T227 x 3, 16T259 x 8, 16T261 x 4, 16T273 x 4, 16T283 x 4, 32T506, 32T507 x 2, 32T508 x 4, 32T595 x 4, 32T596 x 8, 32T597 x 2, 32T598 x 4, 32T599 x 4, 32T601, 32T602 x 2, 32T633, 32T657, 32T1130 x 2, 32T1796Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3, 4)( 5,13)( 6,14)( 7, 8)(11,12)(15,16)$ |
2E | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1,10)( 2, 9)( 5,14)( 6,13)$ |
2F | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3,12)( 4,11)( 7,15)( 8,16)( 9,13)(10,14)$ |
2G | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3,11)( 4,12)( 7,16)( 8,15)( 9,14)(10,13)$ |
2H | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
2I | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,10)( 6, 9)( 7,11)( 8,12)$ |
2J | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,10)(11,16)(12,15)(13,14)$ |
2K | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 3, 8)( 4, 7)(11,15)(12,16)$ |
2L | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 5,14)( 6,13)( 7,16)( 8,15)$ |
2M | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$ |
4A | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 8,11,15)( 4, 7,12,16)$ |
4B | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 7,11,16)( 4, 8,12,15)$ |
4C | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1,13,10, 6)( 2,14, 9, 5)( 3,11)( 4,12)$ |
4D | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1,14,10, 5)( 2,13, 9, 6)( 3,12)( 4,11)( 7, 8)(15,16)$ |
4E1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5,16,13, 8)( 6,15,14, 7)( 9,12,10,11)$ |
4E-1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8,13,16)( 6, 7,14,15)( 9,11,10,12)$ |
4F1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5,15,13, 7)( 6,16,14, 8)( 9,11,10,12)$ |
4F-1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7,13,15)( 6, 8,14,16)( 9,12,10,11)$ |
8A1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,16, 5, 3,10, 7,14,11)( 2,15, 6, 4, 9, 8,13,12)$ |
8A-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 8, 5, 4,10,15,14,12)( 2, 7, 6, 3, 9,16,13,11)$ |
8B1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,15, 5, 4,10, 8,14,12)( 2,16, 6, 3, 9, 7,13,11)$ |
8B-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 7, 5, 3,10,16,14,11)( 2, 8, 6, 4, 9,15,13,12)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 2E | 2E | 2M | 2M | 2M | 2M | 4B | 4B | 4B | 4B | |
Type | |||||||||||||||||||||||||||
128.850.1a | R | ||||||||||||||||||||||||||
128.850.1b | R | ||||||||||||||||||||||||||
128.850.1c | R | ||||||||||||||||||||||||||
128.850.1d | R | ||||||||||||||||||||||||||
128.850.1e | R | ||||||||||||||||||||||||||
128.850.1f | R | ||||||||||||||||||||||||||
128.850.1g | R | ||||||||||||||||||||||||||
128.850.1h | R | ||||||||||||||||||||||||||
128.850.1i1 | C | ||||||||||||||||||||||||||
128.850.1i2 | C | ||||||||||||||||||||||||||
128.850.1j1 | C | ||||||||||||||||||||||||||
128.850.1j2 | C | ||||||||||||||||||||||||||
128.850.1k1 | C | ||||||||||||||||||||||||||
128.850.1k2 | C | ||||||||||||||||||||||||||
128.850.1l1 | C | ||||||||||||||||||||||||||
128.850.1l2 | C | ||||||||||||||||||||||||||
128.850.2a | R | ||||||||||||||||||||||||||
128.850.2b | R | ||||||||||||||||||||||||||
128.850.2c | R | ||||||||||||||||||||||||||
128.850.2d | R | ||||||||||||||||||||||||||
128.850.4a | R | ||||||||||||||||||||||||||
128.850.4b | R | ||||||||||||||||||||||||||
128.850.4c | R | ||||||||||||||||||||||||||
128.850.4d | R | ||||||||||||||||||||||||||
128.850.4e | R | ||||||||||||||||||||||||||
128.850.4f | R |
Regular extensions
Data not computed