Normalized defining polynomial
\( x^{16} + 8x^{14} + 28x^{12} + 56x^{10} + 82x^{8} + 104x^{6} + 88x^{4} + 32x^{2} + 4 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1378596953991976568487936\)
\(\medspace = 2^{58}\cdot 3^{14}\)
|
| |
Root discriminant: | \(32.26\) |
| |
Galois root discriminant: | $2^{2347/512}3^{7/8}\approx 62.71882224263865$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{2}a^{14}$, $\frac{1}{2}a^{15}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( a^{12} + 6 a^{10} + \frac{31}{2} a^{8} + 22 a^{6} + 30 a^{4} + 32 a^{2} + 8 \)
(order $6$)
|
| |
Fundamental units: |
$4a^{14}+25a^{12}+68a^{10}+\frac{207}{2}a^{8}+143a^{6}+160a^{4}+64a^{2}+8$, $\frac{1}{2}a^{14}-\frac{5}{2}a^{12}-5a^{10}-\frac{9}{2}a^{8}-7a^{6}-5a^{4}+6a^{2}$, $\frac{5}{2}a^{15}+3a^{14}-\frac{33}{2}a^{13}+19a^{12}-\frac{95}{2}a^{11}+\frac{105}{2}a^{10}-77a^{9}+\frac{163}{2}a^{8}-106a^{7}+113a^{6}-124a^{5}+129a^{4}-65a^{3}+58a^{2}-10a+9$, $4a^{14}+29a^{12}+92a^{10}+\frac{331}{2}a^{8}+231a^{6}+281a^{4}+194a^{2}+39$, $2a^{15}-6a^{14}+\frac{39}{2}a^{13}-46a^{12}+\frac{153}{2}a^{11}-\frac{305}{2}a^{10}+163a^{9}-\frac{569}{2}a^{8}+232a^{7}-396a^{6}+300a^{5}-491a^{4}+271a^{3}-362a^{2}+70a-71$, $\frac{13}{2}a^{15}-\frac{1}{2}a^{14}+52a^{13}-4a^{12}+\frac{357}{2}a^{11}-14a^{10}+343a^{9}-28a^{8}+479a^{7}-41a^{6}+600a^{5}-52a^{4}+468a^{3}-44a^{2}+96a-15$, $\frac{1}{2}a^{15}+\frac{13}{2}a^{14}-\frac{7}{2}a^{13}+\frac{99}{2}a^{12}-10a^{11}+164a^{10}-14a^{9}+\frac{615}{2}a^{8}-13a^{7}+433a^{6}-11a^{5}+537a^{4}+5a^{3}+397a^{2}+16a+82$
|
| |
Regulator: | \( 1339326.4099515057 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1339326.4099515057 \cdot 1}{6\cdot\sqrt{1378596953991976568487936}}\cr\approx \mathstrut & 0.461801641052708 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.1728.1, 8.0.2293235712.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.58a2.1322 | $x^{16} + 8 x^{15} + 48 x^{14} + 200 x^{13} + 642 x^{12} + 1608 x^{11} + 3252 x^{10} + 5368 x^{9} + 7343 x^{8} + 8360 x^{7} + 7956 x^{6} + 6296 x^{5} + 4102 x^{4} + 2144 x^{3} + 868 x^{2} + 256 x + 47$ | $8$ | $2$ | $58$ | 16T1455 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |