Normalized defining polynomial
\( x^{16} - 8x^{14} + 24x^{12} - 32x^{10} + 28x^{8} - 48x^{6} + 60x^{4} - 24x^{2} + 3 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1838129271989302091317248\)
\(\medspace = 2^{60}\cdot 3^{13}\)
|
| |
Root discriminant: | \(32.85\) |
| |
Galois root discriminant: | $2^{2347/512}3^{7/8}\approx 62.71882224263865$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{7}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( a^{12} - 6 a^{10} + \frac{23}{2} a^{8} - 6 a^{6} + 10 a^{4} - 24 a^{2} + \frac{13}{2} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{7}{2}a^{15}+\frac{7}{2}a^{14}+\frac{49}{2}a^{13}-\frac{47}{2}a^{12}-\frac{123}{2}a^{11}+\frac{111}{2}a^{10}+\frac{125}{2}a^{9}-51a^{8}-\frac{117}{2}a^{7}+\frac{105}{2}a^{6}+\frac{243}{2}a^{5}-\frac{223}{2}a^{4}-\frac{217}{2}a^{3}+\frac{169}{2}a^{2}+\frac{47}{2}a-17$, $a^{15}-\frac{3}{2}a^{14}-5a^{13}+\frac{19}{2}a^{12}+\frac{11}{2}a^{11}-20a^{10}+\frac{11}{2}a^{9}+\frac{27}{2}a^{8}+4a^{7}-\frac{33}{2}a^{6}-13a^{5}+\frac{83}{2}a^{4}-\frac{41}{2}a^{3}-20a^{2}+\frac{13}{2}a+\frac{5}{2}$, $a^{15}-3a^{14}+\frac{11}{2}a^{13}+19a^{12}-\frac{17}{2}a^{11}-\frac{81}{2}a^{10}+\frac{59}{2}a^{8}-6a^{7}-37a^{6}+\frac{35}{2}a^{5}+85a^{4}+\frac{13}{2}a^{3}-\frac{89}{2}a^{2}-4a+\frac{13}{2}$, $\frac{3}{2}a^{14}+\frac{19}{2}a^{12}-\frac{41}{2}a^{10}+\frac{33}{2}a^{8}-\frac{45}{2}a^{6}+\frac{89}{2}a^{4}-\frac{39}{2}a^{2}+\frac{5}{2}$, $a^{15}+\frac{5}{2}a^{14}-\frac{13}{2}a^{13}-\frac{31}{2}a^{12}+\frac{29}{2}a^{11}+32a^{10}-12a^{9}-\frac{43}{2}a^{8}+14a^{7}+\frac{57}{2}a^{6}-\frac{59}{2}a^{5}-\frac{131}{2}a^{4}+\frac{35}{2}a^{3}+29a^{2}-3a-\frac{7}{2}$, $\frac{19}{2}a^{15}+8a^{14}+73a^{13}-62a^{12}-205a^{11}+176a^{10}+\frac{479}{2}a^{9}-209a^{8}-\frac{381}{2}a^{7}+166a^{6}+395a^{5}-339a^{4}-445a^{3}+389a^{2}+\frac{177}{2}a-82$, $\frac{9}{2}a^{15}+a^{14}+\frac{69}{2}a^{13}-9a^{12}-\frac{195}{2}a^{11}+30a^{10}+\frac{235}{2}a^{9}-\frac{87}{2}a^{8}-\frac{197}{2}a^{7}+34a^{6}+\frac{381}{2}a^{5}-58a^{4}-\frac{439}{2}a^{3}+83a^{2}+\frac{123}{2}a-\frac{53}{2}$
|
| |
Regulator: | \( 1842681.0912096142 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1842681.0912096142 \cdot 1}{6\cdot\sqrt{1838129271989302091317248}}\cr\approx \mathstrut & 0.550237075490526 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1444):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.1728.1, 8.0.3057647616.14 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | 16.0.1838129271989302091317248.15, 16.0.1838129271989302091317248.22, 16.0.1838129271989302091317248.7, 16.0.1378596953991976568487936.64, 16.0.1378596953991976568487936.66, 16.0.1378596953991976568487936.23, 16.0.1378596953991976568487936.33 |
Degree 32 siblings: | deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{7}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.60a2.3191 | $x^{16} + 16 x^{15} + 100 x^{14} + 400 x^{13} + 1158 x^{12} + 2624 x^{11} + 4832 x^{10} + 7424 x^{9} + 9631 x^{8} + 10608 x^{7} + 9888 x^{6} + 7728 x^{5} + 4974 x^{4} + 2576 x^{3} + 1044 x^{2} + 320 x + 67$ | $8$ | $2$ | $60$ | 16T1444 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |