Normalized defining polynomial
\( x^{16} - 12x^{14} + 60x^{12} - 96x^{10} + 42x^{8} + 72x^{6} - 72x^{4} + 36 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1378596953991976568487936\)
\(\medspace = 2^{58}\cdot 3^{14}\)
|
| |
Root discriminant: | \(32.26\) |
| |
Galois root discriminant: | $2^{2347/512}3^{7/8}\approx 62.71882224263865$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6}a^{8}$, $\frac{1}{6}a^{9}$, $\frac{1}{6}a^{10}$, $\frac{1}{6}a^{11}$, $\frac{1}{6}a^{12}$, $\frac{1}{6}a^{13}$, $\frac{1}{13794}a^{14}+\frac{859}{13794}a^{12}+\frac{179}{2299}a^{10}-\frac{335}{13794}a^{8}-\frac{728}{2299}a^{6}+\frac{448}{2299}a^{4}-\frac{634}{2299}a^{2}-\frac{454}{2299}$, $\frac{1}{41382}a^{15}-\frac{80}{2299}a^{13}+\frac{179}{6897}a^{11}-\frac{439}{6897}a^{9}+\frac{1571}{6897}a^{7}-\frac{617}{2299}a^{5}+\frac{555}{2299}a^{3}+\frac{615}{2299}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{5}{363} a^{14} + \frac{61}{363} a^{12} - \frac{96}{121} a^{10} + \frac{189}{242} a^{8} + \frac{262}{121} a^{6} - \frac{366}{121} a^{4} + \frac{48}{121} a^{2} + \frac{305}{121} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{1099}{13794}a^{14}-\frac{1674}{2299}a^{12}+\frac{15413}{6897}a^{10}+\frac{26276}{6897}a^{8}-\frac{18412}{2299}a^{6}+\frac{4964}{2299}a^{4}+\frac{15924}{2299}a^{2}-\frac{63}{2299}$, $\frac{229}{2178}a^{15}-\frac{706}{6897}a^{14}+\frac{389}{363}a^{13}+\frac{17057}{13794}a^{12}-\frac{515}{121}a^{11}-\frac{84211}{13794}a^{10}+\frac{464}{363}a^{9}+\frac{61786}{6897}a^{8}+\frac{700}{363}a^{7}+\frac{283}{2299}a^{6}-\frac{277}{121}a^{5}-\frac{16444}{2299}a^{4}-\frac{529}{121}a^{3}+\frac{5495}{2299}a^{2}-\frac{112}{121}a+\frac{4225}{2299}$, $\frac{229}{2178}a^{15}-\frac{706}{6897}a^{14}-\frac{389}{363}a^{13}+\frac{17057}{13794}a^{12}+\frac{515}{121}a^{11}-\frac{84211}{13794}a^{10}-\frac{464}{363}a^{9}+\frac{61786}{6897}a^{8}-\frac{700}{363}a^{7}+\frac{283}{2299}a^{6}+\frac{277}{121}a^{5}-\frac{16444}{2299}a^{4}+\frac{529}{121}a^{3}+\frac{5495}{2299}a^{2}+\frac{112}{121}a+\frac{4225}{2299}$, $\frac{365}{6897}a^{14}+\frac{3251}{4598}a^{12}-\frac{8823}{2299}a^{10}+\frac{99713}{13794}a^{8}+\frac{371}{2299}a^{6}-\frac{16675}{2299}a^{4}+\frac{7618}{2299}a^{2}+\frac{9560}{2299}$, $\frac{365}{4598}a^{15}-\frac{430}{6897}a^{14}+\frac{3727}{4598}a^{13}+\frac{3068}{6897}a^{12}-\frac{47221}{13794}a^{11}-\frac{2113}{4598}a^{10}+\frac{7111}{2299}a^{9}-\frac{38075}{4598}a^{8}-\frac{16686}{2299}a^{7}+\frac{21443}{2299}a^{6}+\frac{8323}{2299}a^{5}-\frac{8244}{2299}a^{4}+\frac{2231}{2299}a^{3}-\frac{11118}{2299}a^{2}-\frac{17846}{2299}a-\frac{2689}{2299}$, $\frac{13}{66}a^{15}+\frac{109}{2299}a^{14}-\frac{76}{33}a^{13}-\frac{4183}{6897}a^{12}+\frac{370}{33}a^{11}+\frac{22441}{6897}a^{10}-\frac{185}{11}a^{9}-\frac{29349}{4598}a^{8}+\frac{117}{11}a^{7}+\frac{8977}{2299}a^{6}+\frac{16}{11}a^{5}+\frac{5617}{2299}a^{4}-\frac{36}{11}a^{3}-\frac{14610}{2299}a^{2}+\frac{16}{11}a+\frac{4253}{2299}$, $\frac{9323}{20691}a^{15}+\frac{1619}{6897}a^{14}+\frac{82837}{13794}a^{13}-\frac{18566}{6897}a^{12}-\frac{474865}{13794}a^{11}+\frac{57983}{4598}a^{10}+\frac{564409}{6897}a^{9}-\frac{35185}{2299}a^{8}-\frac{628934}{6897}a^{7}-\frac{3088}{2299}a^{6}+\frac{60160}{2299}a^{5}+\frac{57430}{2299}a^{4}+\frac{75136}{2299}a^{3}-\frac{55061}{2299}a^{2}-\frac{68848}{2299}a+\frac{21999}{2299}$
|
| |
Regulator: | \( 2338734.685239014 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2338734.685239014 \cdot 1}{6\cdot\sqrt{1378596953991976568487936}}\cr\approx \mathstrut & 0.806399028351402 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.1728.1, 8.0.2293235712.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.58a2.1328 | $x^{16} + 8 x^{15} + 48 x^{14} + 200 x^{13} + 642 x^{12} + 1624 x^{11} + 3348 x^{10} + 5688 x^{9} + 8063 x^{8} + 9560 x^{7} + 9492 x^{6} + 7832 x^{5} + 5302 x^{4} + 2864 x^{3} + 1188 x^{2} + 352 x + 63$ | $8$ | $2$ | $58$ | 16T1455 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |