Normalized defining polynomial
\( x^{16} + 12x^{14} + 42x^{12} - 69x^{8} + 126x^{4} + 108x^{2} + 27 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1838129271989302091317248\)
\(\medspace = 2^{60}\cdot 3^{13}\)
|
| |
Root discriminant: | \(32.85\) |
| |
Galois root discriminant: | $2^{2347/512}3^{7/8}\approx 62.71882224263865$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}$, $\frac{1}{3}a^{9}$, $\frac{1}{3}a^{10}$, $\frac{1}{3}a^{11}$, $\frac{1}{9}a^{12}+\frac{1}{3}a^{4}$, $\frac{1}{9}a^{13}+\frac{1}{3}a^{5}$, $\frac{1}{19539}a^{14}-\frac{739}{19539}a^{12}-\frac{324}{2171}a^{10}+\frac{172}{2171}a^{8}+\frac{3241}{6513}a^{6}+\frac{1871}{6513}a^{4}-\frac{67}{167}a^{2}+\frac{662}{2171}$, $\frac{1}{58617}a^{15}-\frac{970}{19539}a^{13}-\frac{3143}{19539}a^{11}+\frac{172}{6513}a^{9}+\frac{3241}{19539}a^{7}+\frac{2071}{6513}a^{5}+\frac{100}{501}a^{3}-\frac{503}{2171}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{4820}{19539} a^{14} - \frac{18302}{6513} a^{12} - \frac{18808}{2171} a^{10} + \frac{11137}{2171} a^{8} + \frac{87736}{6513} a^{6} - \frac{17330}{2171} a^{4} - \frac{4380}{167} a^{2} - \frac{23351}{2171} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{6683}{6513}a^{15}+\frac{3343}{19539}a^{14}-\frac{76273}{6513}a^{13}+\frac{37028}{19539}a^{12}-\frac{235907}{6513}a^{11}+\frac{35327}{6513}a^{10}+\frac{138475}{6513}a^{9}-\frac{11174}{2171}a^{8}+\frac{126382}{2171}a^{7}-\frac{48560}{6513}a^{6}-\frac{74918}{2171}a^{5}+\frac{47864}{6513}a^{4}-\frac{18101}{167}a^{3}+\frac{2471}{167}a^{2}-\frac{98810}{2171}a+\frac{7330}{2171}$, $\frac{313}{19539}a^{14}-\frac{3161}{19539}a^{12}-\frac{625}{2171}a^{10}+\frac{10001}{6513}a^{8}+\frac{14621}{6513}a^{6}-\frac{5966}{6513}a^{4}-\frac{572}{167}a^{2}-\frac{3132}{2171}$, $\frac{81479}{19539}a^{14}+\frac{102969}{2171}a^{12}+\frac{947048}{6513}a^{10}-\frac{595276}{6513}a^{8}-\frac{1507162}{6513}a^{6}+\frac{316829}{2171}a^{4}+\frac{72615}{167}a^{2}+\frac{382699}{2171}$, $\frac{271}{19539}a^{14}+\frac{3805}{19539}a^{12}+\frac{5792}{6513}a^{10}+\frac{5234}{6513}a^{8}-\frac{13970}{6513}a^{6}-\frac{5315}{6513}a^{4}+\frac{547}{167}a^{2}+\frac{7893}{2171}$, $\frac{7765}{2171}a^{15}+\frac{69322}{19539}a^{14}+\frac{802003}{19539}a^{13}+\frac{786031}{19539}a^{12}+\frac{838205}{6513}a^{11}+\frac{265700}{2171}a^{10}-\frac{440363}{6513}a^{9}-\frac{528968}{6513}a^{8}-\frac{459853}{2171}a^{7}-\frac{1250342}{6513}a^{6}+\frac{727132}{6513}a^{5}+\frac{830902}{6513}a^{4}+\frac{65515}{167}a^{3}+\frac{60651}{167}a^{2}+\frac{392811}{2171}a+\frac{306677}{2171}$, $\frac{84260}{58617}a^{15}-\frac{30361}{19539}a^{14}-\frac{316403}{19539}a^{13}-\frac{347866}{19539}a^{12}-\frac{946811}{19539}a^{11}-\frac{362068}{6513}a^{10}+\frac{233173}{6513}a^{9}+\frac{197221}{6513}a^{8}+\frac{1436290}{19539}a^{7}+\frac{591086}{6513}a^{6}-\frac{116394}{2171}a^{5}-\frac{339892}{6513}a^{4}-\frac{69320}{501}a^{3}-\frac{28764}{167}a^{2}-\frac{103690}{2171}a-\frac{167031}{2171}$, $\frac{55909}{58617}a^{15}-\frac{27067}{19539}a^{14}+\frac{210437}{19539}a^{13}-\frac{305021}{19539}a^{12}+\frac{630514}{19539}a^{11}-\frac{305165}{6513}a^{10}-\frac{159665}{6513}a^{9}+\frac{216571}{6513}a^{8}-\frac{1019645}{19539}a^{7}+\frac{442334}{6513}a^{6}+\frac{292510}{6513}a^{5}-\frac{316406}{6513}a^{4}+\frac{43828}{501}a^{3}-\frac{22008}{167}a^{2}+\frac{68208}{2171}a-\frac{133522}{2171}$
|
| |
Regulator: | \( 2814227.887624273 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2814227.887624273 \cdot 1}{6\cdot\sqrt{1838129271989302091317248}}\cr\approx \mathstrut & 0.840347540351523 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1444):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.1728.1, 8.0.3057647616.14 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{7}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.60a2.3188 | $x^{16} + 16 x^{15} + 100 x^{14} + 400 x^{13} + 1174 x^{12} + 2720 x^{11} + 5152 x^{10} + 8144 x^{9} + 10831 x^{8} + 12144 x^{7} + 11424 x^{6} + 8928 x^{5} + 5694 x^{4} + 2896 x^{3} + 1140 x^{2} + 336 x + 67$ | $8$ | $2$ | $60$ | 16T1444 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |
3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |