Properties

Label 3.2.8.14a1.2
Base \(\Q_{3}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(14\)
Galois group $QD_{16}$ (as 16T12)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{8} + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: $\SD_{16}$
This field is Galois over $\Q_{3}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[4]$
Roots of unity:$24 = (3^{ 2 } - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.2.2.2a1.2, 3.1.4.3a1.1 x2, 3.1.4.3a1.2 x2, 3.2.4.6a1.2, 3.1.8.7a1.1 x4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 2 z^6 + z^5 + 2 z^4 + z^3 + 2 z^2 + z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $16$
Galois group: $\SD_{16}$ (as 16T12)
Inertia group: Intransitive group isomorphic to $C_8$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $8$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.875$
Galois splitting model:not computed