Defining polynomial
$( x^{2} + 2 x + 2 )^{8} + 3$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $14$ |
Discriminant root field: | $\Q_{3}$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: | $\SD_{16}$ |
This field is Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | $[4]$ |
Roots of unity: | $24 = (3^{ 2 } - 1) \cdot 3$ |
Intermediate fields
$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.2.2.2a1.2, 3.1.4.3a1.1 x2, 3.1.4.3a1.2 x2, 3.2.4.6a1.2, 3.1.8.7a1.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{2} + 2 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^7 + 2 z^6 + z^5 + 2 z^4 + z^3 + 2 z^2 + z + 2$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $16$ |
Galois group: | $\SD_{16}$ (as 16T12) |
Inertia group: | Intransitive group isomorphic to $C_8$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $8$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.875$ |
Galois splitting model: | not computed |