Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $QD_{16}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,6)(2,5)(3,11)(4,12)(7,8)(9,13)(10,14)(15,16), (1,3,5,7,9,12,14,15)(2,4,6,8,10,11,13,16) | |
| $|\Aut(F/K)|$: | $16$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
8T8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5,13)( 6,14)( 9,10)(11,15)(12,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 7, 9,12,14,15)( 2, 4, 6, 8,10,11,13,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 9,11)( 2, 3,10,12)( 5,16,14, 8)( 6,15,13, 7)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3, 7,12,15)( 4, 8,11,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,12, 5,15, 9, 3,14, 7)( 2,11, 6,16,10, 4,13, 8)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 8] |
| Character table: |
2 4 2 3 2 3 4 3
1a 2a 8a 4a 4b 2b 8b
2P 1a 1a 4b 2b 2b 1a 4b
3P 1a 2a 8a 4a 4b 2b 8b
5P 1a 2a 8b 4a 4b 2b 8a
7P 1a 2a 8b 4a 4b 2b 8a
X.1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1
X.3 1 -1 1 -1 1 1 1
X.4 1 1 -1 -1 1 1 -1
X.5 2 . . . -2 2 .
X.6 2 . A . . -2 -A
X.7 2 . -A . . -2 A
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
|