Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group Regulator
16.0.28968410356383744.1 $x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{12} + 8 x^{11} - 8 x^{10} + 6 x^{9} - 2 x^{8} - 6 x^{7} + 16 x^{6} - 20 x^{5} + 17 x^{4} - 12 x^{3} + 8 x^{2} - 4 x + 1$ $2^{24}\cdot 3^{14}\cdot 19^{2}$ $C_2\wr D_4$ (as 16T396) trivial $164.110064006$
16.0.56801432950182144.1 $x^{16} - 4 x^{14} + 4 x^{12} + 8 x^{10} - 17 x^{8} + 2 x^{6} + 13 x^{4} - 7 x^{2} + 1$ $2^{8}\cdot 3^{14}\cdot 7^{4}\cdot 139^{2}$ $C_2^2\wr C_2^2.D_4$ (as 16T1728) trivial $130.436728236$
16.0.59436404287430625.1 $x^{16} - 2 x^{15} - x^{14} + 2 x^{12} + 5 x^{11} - 2 x^{10} + 3 x^{9} + x^{8} - 3 x^{7} - 2 x^{6} - 5 x^{5} + 2 x^{4} - x^{2} + 2 x + 1$ $3^{14}\cdot 5^{4}\cdot 7^{6}\cdot 13^{2}$ $C_2^7.D_4$ (as 16T1177) trivial $148.139912519$
16.0.112938452886196224.1 $x^{16} - 7 x^{15} + 20 x^{14} - 33 x^{13} + 41 x^{12} - 35 x^{11} + 4 x^{10} - 6 x^{9} + 85 x^{8} - 144 x^{7} + 124 x^{6} - 67 x^{5} + 23 x^{4} - 21 x^{3} + 14 x^{2} + x + 1$ $2^{12}\cdot 3^{14}\cdot 7^{8}$ $D_8:C_2$ (as 16T47) trivial $181.136476858$
16.0.176466332634681600.1 $x^{16} - 7 x^{15} + 23 x^{14} - 48 x^{13} + 74 x^{12} - 83 x^{11} + 52 x^{10} + 6 x^{9} - 59 x^{8} + 84 x^{7} - 32 x^{6} - 43 x^{5} + 32 x^{4} + 6 x^{3} - 7 x^{2} + x + 1$ $2^{8}\cdot 3^{14}\cdot 5^{2}\cdot 7^{8}$ $C_2^7:D_4$ (as 16T1171) trivial $232.210859483$
16.0.192668014586363904.2 $x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 8 x^{12} + 10 x^{11} - 32 x^{10} + 48 x^{9} - 38 x^{8} - 12 x^{7} + 82 x^{6} - 130 x^{5} + 125 x^{4} - 78 x^{3} + 32 x^{2} - 8 x + 1$ $2^{24}\cdot 3^{14}\cdot 7^{4}$ $C_2\wr D_4$ (as 16T401) trivial $540.480733753$
16.0.219809187453515625.2 $x^{16} - x^{15} + 4 x^{13} + 11 x^{12} - 6 x^{11} + x^{10} + 23 x^{9} + 6 x^{8} + 14 x^{7} + 25 x^{6} + 24 x^{5} + 29 x^{4} + 22 x^{3} + 12 x^{2} + 5 x + 1$ $3^{14}\cdot 5^{8}\cdot 7^{6}$ $D_4:D_4$ (as 16T141) trivial $273.618741754$
16.0.328683126924509184.2 $x^{16} + 6 x^{12} + 87 x^{8} + 54 x^{4} + 9$ $2^{36}\cdot 3^{14}$ $D_8:C_2$ (as 16T35) trivial $763.555572776$
16.0.345874011963975936.1 $x^{16} - 7 x^{15} + 26 x^{14} - 72 x^{13} + 167 x^{12} - 332 x^{11} + 574 x^{10} - 879 x^{9} + 1210 x^{8} - 1500 x^{7} + 1642 x^{6} - 1543 x^{5} + 1235 x^{4} - 837 x^{3} + 446 x^{2} - 155 x + 25$ $2^{8}\cdot 3^{14}\cdot 7^{10}$ $C_4^2:D_4$ (as 16T406) trivial $311.42757219$
16.0.489776025600000000.1 $x^{16} - 3 x^{15} + 2 x^{14} + 6 x^{13} - 8 x^{12} + 3 x^{11} + 5 x^{10} - 6 x^{9} + 4 x^{8} + 6 x^{7} + 5 x^{6} - 3 x^{5} - 8 x^{4} - 6 x^{3} + 2 x^{2} + 3 x + 1$ $2^{18}\cdot 3^{14}\cdot 5^{8}$ $D_8:C_2$ (as 16T45) trivial $505.579087345$
16.0.555307587640295424.1 $x^{16} - 4 x^{15} - x^{14} + 24 x^{13} - 22 x^{12} - 50 x^{11} + 85 x^{10} + 24 x^{9} - 119 x^{8} + 66 x^{7} + 61 x^{6} - 100 x^{5} + 20 x^{4} + 42 x^{3} - 37 x^{2} - 2 x + 13$ $2^{16}\cdot 3^{14}\cdot 11^{6}$ $D_8:C_2$ (as 16T44) trivial $919.831986506$
16.0.844418974521425625.1 $x^{16} - 6 x^{15} + 17 x^{14} - 24 x^{13} + 4 x^{12} + 36 x^{11} - 70 x^{10} + 87 x^{9} - 71 x^{8} - 6 x^{7} + 119 x^{6} - 105 x^{5} + 88 x^{4} - 21 x^{3} - x^{2} + 1$ $3^{14}\cdot 5^{4}\cdot 7^{10}$ $D_4:D_4$ (as 16T152) trivial $449.398758092$
16.0.921677784681222144.1 $x^{16} - x^{15} - 4 x^{14} - 3 x^{13} + 23 x^{12} + x^{11} - 44 x^{10} + 3 x^{9} + 52 x^{8} - 3 x^{7} - 44 x^{6} - x^{5} + 23 x^{4} + 3 x^{3} - 4 x^{2} + x + 1$ $2^{12}\cdot 3^{14}\cdot 19^{6}$ $C_2^6.D_4$ (as 16T1025) trivial $656.036206893$
16.0.161...625.1 $x^{16} - x^{15} + 5 x^{14} - 12 x^{13} + 2 x^{12} - 11 x^{11} + 16 x^{10} + 12 x^{9} + x^{8} - 6 x^{7} - 2 x^{6} + 23 x^{5} - 10 x^{4} - 6 x^{3} + 11 x^{2} - 5 x + 1$ $3^{14}\cdot 5^{8}\cdot 7^{4}\cdot 19^{2}$ $D_4^2:C_2^2$ (as 16T509) trivial $852.1489409448465$
16.0.271...729.2 $x^{16} - 2 x^{15} + 5 x^{14} - 6 x^{13} + 20 x^{12} - 4 x^{11} + 55 x^{10} + 79 x^{8} + 55 x^{6} + 4 x^{5} + 20 x^{4} + 6 x^{3} + 5 x^{2} + 2 x + 1$ $3^{14}\cdot 7^{6}\cdot 13^{6}$ $C_2\wr D_4$ (as 16T391) trivial $1231.48682386$
16.0.525...944.1 $x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 8 x^{12} + 4 x^{11} - 44 x^{10} + 108 x^{9} - 5 x^{8} - 156 x^{7} + 88 x^{6} + 68 x^{5} - 70 x^{4} + 20 x^{2} - 8 x + 1$ $2^{40}\cdot 3^{14}$ $D_8:C_2$ (as 16T38) trivial $2448.16044438$
16.0.525...944.4 $x^{16} - 6 x^{14} + 24 x^{12} - 60 x^{10} + 87 x^{8} - 72 x^{6} + 36 x^{4} - 18 x^{2} + 9$ $2^{40}\cdot 3^{14}$ $D_8:C_2$ (as 16T47) trivial $2956.23502731$
16.0.525...944.7 $x^{16} - 12 x^{14} + 60 x^{12} - 162 x^{10} + 267 x^{8} - 270 x^{6} + 162 x^{4} - 54 x^{2} + 9$ $2^{40}\cdot 3^{14}$ $D_4:D_4$ (as 16T152) trivial $3179.4078550056565$
16.0.741...464.1 $x^{16} + 2 x^{14} + x^{12} - 16 x^{10} + 4 x^{8} + 2 x^{6} + 10 x^{4} + 2 x^{2} + 1$ $2^{32}\cdot 3^{14}\cdot 19^{2}$ $C_2^6.D_4$ (as 16T878) trivial $2538.00282026$
16.0.944...296.4 $x^{16} - 4 x^{15} + 6 x^{14} - 2 x^{13} - 4 x^{12} + 30 x^{11} + 22 x^{10} - 58 x^{9} - 30 x^{8} + 122 x^{7} + 172 x^{6} + 144 x^{5} + 125 x^{4} + 64 x^{3} + 12 x^{2} + 2 x + 1$ $2^{24}\cdot 3^{14}\cdot 7^{6}$ $C_4^2:D_4$ (as 16T408) trivial $2379.04654143$
16.0.944...296.6 $x^{16} - 6 x^{15} + 14 x^{14} - 12 x^{13} + 10 x^{12} - 114 x^{11} + 452 x^{10} - 930 x^{9} + 1219 x^{8} - 1122 x^{7} + 788 x^{6} - 450 x^{5} + 214 x^{4} - 84 x^{3} + 26 x^{2} - 6 x + 1$ $2^{24}\cdot 3^{14}\cdot 7^{6}$ $C_2^6.D_4$ (as 16T1025) trivial $2363.59812066$
16.0.100...625.1 $x^{16} - 3 x^{15} + 3 x^{14} - 12 x^{13} + 33 x^{12} - 18 x^{11} + 45 x^{10} - 105 x^{9} + 15 x^{8} - 63 x^{7} + 144 x^{6} + 45 x^{5} + 81 x^{4} - 45 x^{3} - 9 x^{2} - 18 x + 9$ $3^{14}\cdot 5^{4}\cdot 7^{6}\cdot 13^{4}$ $C_4.D_4^2$ (as 16T511) trivial $1854.603895$
16.0.100...625.2 $x^{16} + 6 x^{14} - 15 x^{13} + 15 x^{12} - 54 x^{11} + 99 x^{10} - 84 x^{9} + 159 x^{8} - 234 x^{7} + 135 x^{6} - 117 x^{5} + 162 x^{4} - 63 x^{3} - 9 x^{2} - 9 x + 9$ $3^{14}\cdot 5^{4}\cdot 7^{6}\cdot 13^{4}$ $C_4.D_4^2$ (as 16T511) $[2]$ $1130.60888908$
16.0.104...584.1 $x^{16} - 7 x^{14} + 22 x^{12} - 40 x^{10} + 43 x^{8} - 22 x^{6} - 2 x^{4} + 5 x^{2} + 1$ $2^{24}\cdot 3^{14}\cdot 19^{4}$ $(C_2^2\times D_4^2).D_4$ (as 16T1347) trivial $2556.07087636$
16.0.141...176.1 $x^{16} + 2 x^{14} + 16 x^{12} + 65 x^{10} - 126 x^{9} + 172 x^{8} - 144 x^{7} + 137 x^{6} - 186 x^{5} + 64 x^{4} - 30 x^{3} + 80 x^{2} - 42 x + 7$ $2^{8}\cdot 3^{14}\cdot 7^{4}\cdot 13^{6}$ $D_4^2:D_4$ (as 16T877) trivial $2827.57534373$
16.0.187...824.2 $x^{16} - 12 x^{14} + 57 x^{12} - 144 x^{10} + 240 x^{8} - 252 x^{6} + 117 x^{4} + 9$ $2^{28}\cdot 3^{14}\cdot 11^{4}$ $D_4^2:C_2^2$ (as 16T645) trivial $8709.28503106$
16.0.210...776.1 $x^{16} - 6 x^{14} + 12 x^{12} - 12 x^{10} + 42 x^{8} - 144 x^{6} + 216 x^{4} - 144 x^{2} + 36$ $2^{42}\cdot 3^{14}$ $C_4^2:D_4$ (as 16T394) trivial $6259.138958637788$
16.4.210...776.1 $x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 158 x^{12} - 220 x^{11} + 220 x^{10} - 120 x^{9} - 56 x^{8} + 240 x^{7} - 320 x^{6} + 256 x^{5} - 136 x^{4} + 48 x^{3} - 16 x^{2} + 8 x - 2$ $2^{42}\cdot 3^{14}$ $D_8:C_2$ (as 16T45) trivial $3695.54224592$
16.0.230...000.1 $x^{16} + 9 x^{14} + 36 x^{12} + 78 x^{10} + 96 x^{8} + 45 x^{6} - 18 x^{4} - 27 x^{2} + 9$ $2^{16}\cdot 3^{14}\cdot 5^{4}\cdot 7^{6}$ $C_4^2:C_2^3$ (as 16T265) trivial $5811.3142561$
16.0.230...000.3 $x^{16} - x^{14} - 11 x^{12} + 2 x^{10} + 43 x^{8} + 2 x^{6} - 11 x^{4} - x^{2} + 1$ $2^{16}\cdot 3^{14}\cdot 5^{4}\cdot 7^{6}$ $C_2^6.D_4$ (as 16T902) trivial $2968.96122218$
16.0.230...000.5 $x^{16} - 10 x^{14} + 46 x^{12} - 112 x^{10} + 157 x^{8} - 121 x^{6} + 49 x^{4} - 10 x^{2} + 1$ $2^{16}\cdot 3^{14}\cdot 5^{4}\cdot 7^{6}$ $C_2^6.D_4$ (as 16T902) trivial $4367.6940616838265$
16.0.313...000.1 $x^{16} - 6 x^{15} + 23 x^{14} - 54 x^{13} + 94 x^{12} - 108 x^{11} + 89 x^{10} - 36 x^{9} + 19 x^{8} - 36 x^{7} + 89 x^{6} - 108 x^{5} + 94 x^{4} - 54 x^{3} + 23 x^{2} - 6 x + 1$ $2^{24}\cdot 3^{14}\cdot 5^{8}$ $D_8:C_2$ (as 16T35) $[2]$ $1264.66424923$
16.4.313...000.2 $x^{16} - 4 x^{15} + 6 x^{14} + 4 x^{13} - 37 x^{12} + 84 x^{11} - 92 x^{10} + 8 x^{9} + 132 x^{8} - 220 x^{7} + 118 x^{6} + 108 x^{5} - 214 x^{4} + 160 x^{3} + 30 x^{2} - 100 x + 25$ $2^{24}\cdot 3^{14}\cdot 5^{8}$ $D_8:C_2$ (as 16T38) trivial $3580.13314395$
16.2.364...875.1 $x^{16} - 7 x^{15} + 17 x^{14} - 9 x^{13} - 37 x^{12} + 91 x^{11} - 98 x^{10} + 48 x^{9} + 31 x^{8} - 126 x^{7} + 235 x^{6} - 307 x^{5} + 269 x^{4} - 168 x^{3} + 65 x^{2} - 17 x + 1$ $-\,3^{14}\cdot 5^{8}\cdot 11^{7}$ $D_{16}:C_2$ (as 16T134) trivial $2365.81050221$
16.2.364...875.2 $x^{16} - 4 x^{15} + 11 x^{14} - 21 x^{13} + 35 x^{12} - 50 x^{11} + 55 x^{10} - 33 x^{9} - 44 x^{8} + 129 x^{7} - 158 x^{6} + 71 x^{5} + 62 x^{4} - 114 x^{3} + 62 x^{2} - 14 x + 1$ $-\,3^{14}\cdot 5^{8}\cdot 11^{7}$ $D_{16}:C_2$ (as 16T134) trivial $2365.81050221$
16.0.397...264.1 $x^{16} - 12 x^{14} + 78 x^{12} - 336 x^{10} + 987 x^{8} - 1944 x^{6} + 2466 x^{4} - 1980 x^{2} + 1089$ $2^{36}\cdot 3^{14}\cdot 11^{2}$ $D_4^2:C_2^2$ (as 16T608) trivial $8769.85537598$
16.0.397...264.2 $x^{16} - 8 x^{15} + 26 x^{14} - 36 x^{13} - 16 x^{12} + 140 x^{11} - 188 x^{10} - 24 x^{9} + 337 x^{8} - 276 x^{7} - 176 x^{6} + 340 x^{5} + 14 x^{4} - 192 x^{3} + 2 x^{2} + 56 x + 13$ $2^{36}\cdot 3^{14}\cdot 11^{2}$ $D_4^2:C_2^2$ (as 16T608) trivial $12278.7384077$
16.4.451...600.1 $x^{16} - 8 x^{15} + 26 x^{14} - 42 x^{13} + 26 x^{12} + 20 x^{11} - 44 x^{10} - 12 x^{9} + 169 x^{8} - 294 x^{7} + 196 x^{6} + 28 x^{5} - 127 x^{4} + 84 x^{3} - 25 x^{2} + 2 x + 1$ $2^{16}\cdot 3^{14}\cdot 5^{2}\cdot 7^{8}$ $C_2^7:D_4$ (as 16T1107) trivial $4301.62259201$
16.0.493...424.2 $x^{16} + 6 x^{12} + 24 x^{8} + 27 x^{4} + 9$ $2^{32}\cdot 3^{14}\cdot 7^{4}$ $C_2^4.D_4$ (as 16T255) trivial $5244.31941527$
16.8.671...304.1 $x^{16} - 4 x^{15} - 7 x^{14} + 36 x^{13} + 29 x^{12} - 140 x^{11} - 95 x^{10} + 258 x^{9} + 211 x^{8} - 138 x^{7} - 194 x^{6} - 184 x^{5} - 124 x^{4} + 144 x^{3} + 248 x^{2} + 112 x + 16$ $2^{16}\cdot 3^{14}\cdot 11^{8}$ $D_8:C_2$ (as 16T47) trivial $7413.69049003$
16.0.705...000.1 $x^{16} - 7 x^{15} + 26 x^{14} - 60 x^{13} + 98 x^{12} - 116 x^{11} + 109 x^{10} - 90 x^{9} + 91 x^{8} - 90 x^{7} + 85 x^{6} - 34 x^{5} + 2 x^{4} + 21 x^{3} - 7 x^{2} - 2 x + 1$ $2^{12}\cdot 3^{14}\cdot 5^{4}\cdot 7^{8}$ $C_2^7:D_4$ (as 16T1121) $[4]$ $3201.91875448$
16.0.841...104.7 $x^{16} + 8 x^{14} + 16 x^{12} - 16 x^{10} - 50 x^{8} + 56 x^{6} + 112 x^{4} - 16 x^{2} + 1$ $2^{44}\cdot 3^{14}$ $C_2^4.D_4$ (as 16T389) trivial $11716.5853577$
16.0.841...104.9 $x^{16} - 4 x^{14} + 10 x^{12} + 44 x^{10} + 19 x^{8} - 28 x^{6} + 10 x^{4} + 8 x^{2} + 1$ $2^{44}\cdot 3^{14}$ $C_2^4.D_4$ (as 16T389) trivial $7780.532078320641$
16.0.841...104.10 $x^{16} - 4 x^{14} + 10 x^{12} - 52 x^{10} + 67 x^{8} + 68 x^{6} + 34 x^{4} + 8 x^{2} + 1$ $2^{44}\cdot 3^{14}$ $C_2^4.D_4$ (as 16T389) trivial $11716.58535771335$
16.0.841...104.12 $x^{16} - 4 x^{15} - 4 x^{14} + 36 x^{13} - 10 x^{12} - 116 x^{11} + 100 x^{10} + 180 x^{9} - 170 x^{8} - 180 x^{7} + 100 x^{6} + 116 x^{5} - 10 x^{4} - 36 x^{3} - 4 x^{2} + 4 x + 1$ $2^{44}\cdot 3^{14}$ $D_4:D_4$ (as 16T141) trivial $6769.454992502842$
16.0.841...104.13 $x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 152 x^{12} - 172 x^{11} + 76 x^{10} + 120 x^{9} - 299 x^{8} + 348 x^{7} - 248 x^{6} + 40 x^{5} + 224 x^{4} - 324 x^{3} + 140 x^{2} + 44 x + 7$ $2^{44}\cdot 3^{14}$ $D_4:D_4$ (as 16T141) trivial $15351.019788068428$
16.0.841...104.15 $x^{16} - 24 x^{12} + 150 x^{8} + 72 x^{4} + 9$ $2^{44}\cdot 3^{14}$ $D_4:D_4$ (as 16T152) trivial $18243.5109293166$
16.0.841...104.17 $x^{16} + 8 x^{14} + 28 x^{12} + 56 x^{10} + 70 x^{8} + 56 x^{6} + 28 x^{4} + 8 x^{2} + 49$ $2^{44}\cdot 3^{14}$ $C_2^4.D_4$ (as 16T389) trivial $7780.532078320641$
16.0.118...424.2 $x^{16} - 4 x^{15} + 12 x^{14} - 32 x^{13} + 44 x^{12} - 62 x^{10} + 32 x^{9} + 51 x^{8} - 40 x^{7} - 26 x^{6} + 12 x^{5} + 20 x^{4} + 16 x^{3} - 30 x^{2} - 4 x + 19$ $2^{36}\cdot 3^{14}\cdot 19^{2}$ $(C_2^2\times D_4^2).D_4$ (as 16T1412) trivial $11197.3974457$
16.0.119...000.1 $x^{16} - x^{15} + 9 x^{14} - 11 x^{13} + 41 x^{12} - 48 x^{11} + 121 x^{10} - 103 x^{9} + 222 x^{8} - 112 x^{7} + 241 x^{6} - 12 x^{5} + 161 x^{4} + 136 x^{3} + 54 x^{2} + 11 x + 1$ $2^{12}\cdot 3^{14}\cdot 5^{14}$ $D_8:C_2$ (as 16T45) $[4]$ $2507.21119771$
Next   To download results, determine the number of results.