Normalized defining polynomial
\( x^{16} - 8 x^{15} + 26 x^{14} - 36 x^{13} - 16 x^{12} + 140 x^{11} - 188 x^{10} - 24 x^{9} + 337 x^{8} + \cdots + 13 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(39770658357865611264\)
\(\medspace = 2^{36}\cdot 3^{14}\cdot 11^{2}\)
|
| |
Root discriminant: | \(16.79\) |
| |
Galois root discriminant: | $2^{19/8}3^{7/8}11^{1/2}\approx 44.99079632827353$ | ||
Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\zeta_{12})\) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13}a^{14}+\frac{5}{13}a^{13}-\frac{4}{13}a^{12}-\frac{4}{13}a^{11}-\frac{6}{13}a^{8}+\frac{2}{13}a^{7}-\frac{3}{13}a^{6}+\frac{2}{13}a^{5}+\frac{5}{13}a^{4}-\frac{6}{13}a^{3}-\frac{6}{13}a^{2}+\frac{1}{13}a$, $\frac{1}{77160083}a^{15}-\frac{1771901}{77160083}a^{14}-\frac{36669433}{77160083}a^{13}-\frac{15959170}{77160083}a^{12}-\frac{23926333}{77160083}a^{11}+\frac{2790618}{5935391}a^{10}+\frac{271334}{580151}a^{9}-\frac{26687272}{77160083}a^{8}-\frac{32235127}{77160083}a^{7}+\frac{37983485}{77160083}a^{6}+\frac{15341566}{77160083}a^{5}+\frac{14415404}{77160083}a^{4}-\frac{98834}{4061057}a^{3}-\frac{38012314}{77160083}a^{2}+\frac{1478506}{7014553}a-\frac{1983294}{5935391}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( \frac{42724590}{77160083} a^{15} - \frac{354081765}{77160083} a^{14} + \frac{93458460}{5935391} a^{13} - \frac{1901260190}{77160083} a^{12} - \frac{109739710}{77160083} a^{11} + \frac{463319096}{5935391} a^{10} - \frac{74493066}{580151} a^{9} + \frac{2060298950}{77160083} a^{8} + \frac{13809832898}{77160083} a^{7} - \frac{16275327468}{77160083} a^{6} - \frac{2270264208}{77160083} a^{5} + \frac{15394328289}{77160083} a^{4} - \frac{243082118}{4061057} a^{3} - \frac{6671694319}{77160083} a^{2} + \frac{227232424}{7014553} a + \frac{118241660}{5935391} \)
(order $12$)
|
| |
Fundamental units: |
$\frac{123599488}{77160083}a^{15}-\frac{1037735346}{77160083}a^{14}+\frac{279414059}{5935391}a^{13}-\frac{5945195670}{77160083}a^{12}+\frac{540986587}{77160083}a^{11}+\frac{1300537508}{5935391}a^{10}-\frac{226387120}{580151}a^{9}+\frac{9781854207}{77160083}a^{8}+\frac{36935121981}{77160083}a^{7}-\frac{49166393572}{77160083}a^{6}-\frac{624986639}{77160083}a^{5}+\frac{41469803026}{77160083}a^{4}-\frac{829919837}{4061057}a^{3}-\frac{16523520628}{77160083}a^{2}+\frac{657431206}{7014553}a+\frac{285303343}{5935391}$, $\frac{63503898}{77160083}a^{15}-\frac{534291696}{77160083}a^{14}+\frac{1872189828}{77160083}a^{13}-\frac{3063473275}{77160083}a^{12}+\frac{265187722}{77160083}a^{11}+\frac{673829605}{5935391}a^{10}-\frac{117183956}{580151}a^{9}+\frac{5054113048}{77160083}a^{8}+\frac{19149064708}{77160083}a^{7}-\frac{25531363785}{77160083}a^{6}-\frac{199961952}{77160083}a^{5}+\frac{21395148147}{77160083}a^{4}-\frac{435499816}{4061057}a^{3}-\frac{8318498753}{77160083}a^{2}+\frac{330710558}{7014553}a+\frac{144396349}{5935391}$, $\frac{1763024}{7014553}a^{15}-\frac{13818230}{7014553}a^{14}+\frac{44641655}{7014553}a^{13}-\frac{63955414}{7014553}a^{12}-\frac{15765052}{7014553}a^{11}+\frac{16698793}{539581}a^{10}-\frac{2378551}{52741}a^{9}+\frac{1321430}{539581}a^{8}+\frac{474743769}{7014553}a^{7}-\frac{454562573}{7014553}a^{6}-\frac{165324571}{7014553}a^{5}+\frac{35693968}{539581}a^{4}-\frac{2604788}{369187}a^{3}-\frac{220300278}{7014553}a^{2}+\frac{55765061}{7014553}a+\frac{3270954}{539581}$, $\frac{2526034}{11022869}a^{15}-\frac{21623707}{11022869}a^{14}+\frac{76901769}{11022869}a^{13}-\frac{127762307}{11022869}a^{12}+\frac{13653399}{11022869}a^{11}+\frac{27979949}{847913}a^{10}-\frac{34358770}{580151}a^{9}+\frac{205522282}{11022869}a^{8}+\frac{829573366}{11022869}a^{7}-\frac{1095499048}{11022869}a^{6}-\frac{42675434}{11022869}a^{5}+\frac{978120521}{11022869}a^{4}-\frac{19292191}{580151}a^{3}-\frac{31570817}{847913}a^{2}+\frac{15238006}{1002079}a+\frac{7230418}{847913}$, $\frac{1626106}{5935391}a^{15}-\frac{175618238}{77160083}a^{14}+\frac{609184678}{77160083}a^{13}-\frac{988407304}{77160083}a^{12}+\frac{84117162}{77160083}a^{11}+\frac{214120597}{5935391}a^{10}-\frac{2832681}{44627}a^{9}+\frac{1515129270}{77160083}a^{8}+\frac{6043815980}{77160083}a^{7}-\frac{7861518097}{77160083}a^{6}-\frac{221815795}{77160083}a^{5}+\frac{6572287655}{77160083}a^{4}-\frac{124120396}{4061057}a^{3}-\frac{2560015154}{77160083}a^{2}+\frac{97475295}{7014553}a+\frac{41793838}{5935391}$, $\frac{50744773}{77160083}a^{15}-\frac{431362424}{77160083}a^{14}+\frac{1521822317}{77160083}a^{13}-\frac{2492309119}{77160083}a^{12}+\frac{159295737}{77160083}a^{11}+\frac{563914781}{5935391}a^{10}-\frac{96926286}{580151}a^{9}+\frac{290915519}{5935391}a^{8}+\frac{16719108096}{77160083}a^{7}-\frac{21623438758}{77160083}a^{6}-\frac{1168409609}{77160083}a^{5}+\frac{1495758531}{5935391}a^{4}-\frac{369896459}{4061057}a^{3}-\frac{8262754410}{77160083}a^{2}+\frac{316777463}{7014553}a+\frac{152015315}{5935391}$, $\frac{6421631}{77160083}a^{15}-\frac{53073981}{77160083}a^{14}+\frac{184939450}{77160083}a^{13}-\frac{305913822}{77160083}a^{12}+\frac{3801395}{5935391}a^{11}+\frac{61907547}{5935391}a^{10}-\frac{11145683}{580151}a^{9}+\frac{565424954}{77160083}a^{8}+\frac{1650312679}{77160083}a^{7}-\frac{2310006098}{77160083}a^{6}+\frac{95513822}{77160083}a^{5}+\frac{1756333765}{77160083}a^{4}-\frac{35045135}{4061057}a^{3}-\frac{679850384}{77160083}a^{2}+\frac{1673358}{539581}a+\frac{13584338}{5935391}$
|
| |
Regulator: | \( 12278.7384077 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 12278.7384077 \cdot 1}{12\cdot\sqrt{39770658357865611264}}\cr\approx \mathstrut & 0.394121437104 \end{aligned}\]
Galois group
$D_4^2:C_2^2$ (as 16T608):
A solvable group of order 256 |
The 34 conjugacy class representatives for $D_4^2:C_2^2$ |
Character table for $D_4^2:C_2^2$ |
Intermediate fields
\(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), 4.2.6912.1 x2, 4.0.1728.1 x2, \(\Q(\zeta_{12})\), 8.0.47775744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.300765603831358685184.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{8}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.36b16.16 | $x^{16} + 8 x^{15} + 38 x^{14} + 128 x^{13} + 336 x^{12} + 716 x^{11} + 1274 x^{10} + 1920 x^{9} + 2471 x^{8} + 2720 x^{7} + 2554 x^{6} + 2028 x^{5} + 1342 x^{4} + 720 x^{3} + 300 x^{2} + 96 x + 17$ | $8$ | $2$ | $36$ | 16T102 | $$[2, 2, 2, 3]^{4}$$ |
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
11.2.2.2a1.1 | $x^{4} + 14 x^{3} + 53 x^{2} + 39 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
11.4.1.0a1.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |