Normalized defining polynomial
\( x^{16} - 3 x^{15} + 3 x^{14} - 12 x^{13} + 33 x^{12} - 18 x^{11} + 45 x^{10} - 105 x^{9} + 15 x^{8} + \cdots + 9 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(10044752324575775625\)
\(\medspace = 3^{14}\cdot 5^{4}\cdot 7^{6}\cdot 13^{4}\)
|
| |
Root discriminant: | \(15.40\) |
| |
Galois root discriminant: | $3^{7/8}5^{1/2}7^{3/4}13^{1/2}\approx 90.73217175218808$ | ||
Ramified primes: |
\(3\), \(5\), \(7\), \(13\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}$, $\frac{1}{3}a^{9}$, $\frac{1}{3}a^{10}$, $\frac{1}{3}a^{11}$, $\frac{1}{3}a^{12}$, $\frac{1}{39}a^{13}-\frac{1}{13}a^{12}+\frac{4}{39}a^{11}+\frac{5}{39}a^{10}+\frac{1}{13}a^{9}+\frac{2}{39}a^{8}+\frac{6}{13}a^{7}+\frac{3}{13}a^{6}-\frac{6}{13}a^{5}-\frac{2}{13}a^{4}-\frac{2}{13}a^{3}-\frac{3}{13}a^{2}-\frac{2}{13}a-\frac{6}{13}$, $\frac{1}{39}a^{14}-\frac{5}{39}a^{12}+\frac{4}{39}a^{11}+\frac{5}{39}a^{10}-\frac{2}{39}a^{9}-\frac{2}{39}a^{8}-\frac{5}{13}a^{7}+\frac{3}{13}a^{6}+\frac{6}{13}a^{5}+\frac{5}{13}a^{4}+\frac{4}{13}a^{3}+\frac{2}{13}a^{2}+\frac{1}{13}a-\frac{5}{13}$, $\frac{1}{701883}a^{15}+\frac{115}{233961}a^{14}-\frac{1972}{233961}a^{13}+\frac{21622}{233961}a^{12}-\frac{1426}{77987}a^{11}+\frac{1667}{77987}a^{10}+\frac{653}{233961}a^{9}+\frac{5748}{77987}a^{8}+\frac{13915}{233961}a^{7}-\frac{892}{5999}a^{6}-\frac{10063}{77987}a^{5}+\frac{31492}{77987}a^{4}-\frac{24944}{77987}a^{3}+\frac{30031}{77987}a^{2}-\frac{23467}{77987}a-\frac{31874}{77987}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( \frac{7604}{33423} a^{15} - \frac{13609}{33423} a^{14} + \frac{698}{11141} a^{13} - \frac{88415}{33423} a^{12} + \frac{4490}{857} a^{11} + \frac{23939}{11141} a^{10} + \frac{146501}{11141} a^{9} - \frac{212731}{11141} a^{8} - \frac{158390}{11141} a^{7} - \frac{364558}{11141} a^{6} + \frac{313383}{11141} a^{5} + \frac{397476}{11141} a^{4} + \frac{608232}{11141} a^{3} + \frac{114207}{11141} a^{2} - \frac{726}{11141} a - \frac{98591}{11141} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{144217}{701883}a^{15}-\frac{122260}{233961}a^{14}+\frac{100652}{233961}a^{13}-\frac{584132}{233961}a^{12}+\frac{1404596}{233961}a^{11}-\frac{132164}{77987}a^{10}+\frac{2496983}{233961}a^{9}-\frac{1512249}{77987}a^{8}-\frac{803792}{233961}a^{7}-\frac{1522848}{77987}a^{6}+\frac{1924092}{77987}a^{5}+\frac{1578574}{77987}a^{4}+\frac{2225123}{77987}a^{3}+\frac{248636}{77987}a^{2}-\frac{112471}{77987}a-\frac{362854}{77987}$, $\frac{129767}{233961}a^{15}-\frac{29143}{17997}a^{14}+\frac{112800}{77987}a^{13}-\frac{1410398}{233961}a^{12}+\frac{301850}{17997}a^{11}-\frac{1616893}{233961}a^{10}+\frac{4481182}{233961}a^{9}-\frac{3710221}{77987}a^{8}-\frac{201160}{77987}a^{7}-\frac{1682630}{77987}a^{6}+\frac{4478259}{77987}a^{5}+\frac{202485}{5999}a^{4}+\frac{3000632}{77987}a^{3}-\frac{226790}{77987}a^{2}-\frac{59432}{77987}a-\frac{398449}{77987}$, $\frac{86378}{233961}a^{15}-\frac{14507}{17997}a^{14}+\frac{4189}{77987}a^{13}-\frac{237515}{77987}a^{12}+\frac{643211}{77987}a^{11}+\frac{1014989}{233961}a^{10}+\frac{1632437}{233961}a^{9}-\frac{5649487}{233961}a^{8}-\frac{1947447}{77987}a^{7}-\frac{744643}{77987}a^{6}+\frac{2841401}{77987}a^{5}+\frac{3747638}{77987}a^{4}+\frac{2567590}{77987}a^{3}+\frac{186348}{77987}a^{2}-\frac{445189}{77987}a-\frac{29376}{5999}$, $\frac{7109}{77987}a^{15}-\frac{50950}{233961}a^{14}+\frac{18433}{233961}a^{13}-\frac{188182}{233961}a^{12}+\frac{515570}{233961}a^{11}+\frac{96302}{233961}a^{10}+\frac{464480}{233961}a^{9}-\frac{461831}{77987}a^{8}-\frac{329271}{77987}a^{7}-\frac{171322}{77987}a^{6}+\frac{529784}{77987}a^{5}+\frac{707405}{77987}a^{4}+\frac{595802}{77987}a^{3}+\frac{263656}{77987}a^{2}+\frac{107573}{77987}a-\frac{6338}{77987}$, $\frac{1493}{77987}a^{15}+\frac{2116}{17997}a^{14}-\frac{102164}{233961}a^{13}+\frac{9080}{77987}a^{12}-\frac{241028}{233961}a^{11}+\frac{1065461}{233961}a^{10}-\frac{14174}{233961}a^{9}+\frac{386188}{233961}a^{8}-\frac{994160}{77987}a^{7}-\frac{35796}{5999}a^{6}+\frac{204895}{77987}a^{5}+\frac{1308324}{77987}a^{4}+\frac{1203400}{77987}a^{3}+\frac{387748}{77987}a^{2}-\frac{132620}{77987}a-\frac{178302}{77987}$, $\frac{274679}{701883}a^{15}-\frac{224612}{233961}a^{14}+\frac{40233}{77987}a^{13}-\frac{304831}{77987}a^{12}+\frac{2364965}{233961}a^{11}+\frac{18659}{233961}a^{10}+\frac{994263}{77987}a^{9}-\frac{2301538}{77987}a^{8}-\frac{3446008}{233961}a^{7}-\frac{1616366}{77987}a^{6}+\frac{3003963}{77987}a^{5}+\frac{3076494}{77987}a^{4}+\frac{3308350}{77987}a^{3}+\frac{488011}{77987}a^{2}-\frac{128566}{77987}a-\frac{477796}{77987}$, $\frac{5149}{701883}a^{15}+\frac{13409}{77987}a^{14}-\frac{63163}{77987}a^{13}+\frac{284189}{233961}a^{12}-\frac{598994}{233961}a^{11}+\frac{2000108}{233961}a^{10}-\frac{188518}{17997}a^{9}+\frac{759259}{77987}a^{8}-\frac{5792756}{233961}a^{7}+\frac{1829938}{77987}a^{6}-\frac{660914}{77987}a^{5}+\frac{2050996}{77987}a^{4}-\frac{1383835}{77987}a^{3}+\frac{101378}{77987}a^{2}-\frac{701608}{77987}a+\frac{337360}{77987}$
|
| |
Regulator: | \( 1854.603895 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1854.603895 \cdot 1}{6\cdot\sqrt{10044752324575775625}}\cr\approx \mathstrut & 0.2369022839 \end{aligned}\]
Galois group
$C_4.D_4^2$ (as 16T511):
A solvable group of order 256 |
The 46 conjugacy class representatives for $C_4.D_4^2$ |
Character table for $C_4.D_4^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.189.1, 4.0.117.1, 4.0.2457.1, 8.0.18753525.1, 8.0.3169345725.2, 8.0.6036849.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | R | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{8}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
\(5\)
| 5.4.1.0a1.1 | $x^{4} + 4 x^{2} + 4 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
5.4.1.0a1.1 | $x^{4} + 4 x^{2} + 4 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(7\)
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
7.1.4.3a1.2 | $x^{4} + 21$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
7.1.4.3a1.2 | $x^{4} + 21$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |