Properties

Label 16T511
Order \(256\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2^2.C_2^5.C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $511$
Group :  $C_2^2.C_2^5.C_2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $3$
Generators:  (3,7)(4,8)(9,15)(10,16)(11,14)(12,13), (1,9,2,10)(3,15,4,16)(5,14,6,13)(7,11,8,12), (1,7)(2,8)(3,5)(4,6)(9,15)(10,16)(11,14)(12,13), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,16)(12,15)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 20, $C_2^3$ x 15
16:  $D_4\times C_2$ x 30, $C_2^4$
32:  $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5
64:  $(C_4^2 : C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4
128:  16T265 x 2, 32T1237

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Degree 8: $C_2^2 \wr C_2$, $(C_4^2 : C_2):C_2$ x 2

Low degree siblings

16T511 x 63, 32T2537 x 16, 32T2538 x 32, 32T2539 x 16, 32T2540 x 32, 32T2541 x 16, 32T6814 x 8, 32T7024 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $4$ $( 9,11,14,15)(10,12,13,16)$
$ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $4$ $( 9,12,14,16)(10,11,13,15)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,13)(10,14)(11,16)(12,15)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,14)(10,13)(11,15)(12,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 3, 7)( 4, 8)(11,15)(12,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 7)( 4, 8)( 9,10)(11,16)(12,15)(13,14)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 7)( 4, 8)( 9,11)(10,12)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 7)( 4, 8)( 9,12)(10,11)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11,14,15)(10,12,13,16)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12,14,16)(10,11,13,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13)(10,14)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14)(10,13)(11,15)(12,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,10)(11,16)(12,15)(13,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,11)(10,12)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,12)(10,11)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,11,14,15)(10,12,13,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,12,14,16)(10,11,13,15)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,13)(10,14)(11,16)(12,15)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,14)(10,13)(11,15)(12,16)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,15,14,11)(10,16,13,12)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,16,14,12)(10,15,13,11)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,12,14,16)(10,11,13,15)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,13)(10,14)(11,16)(12,15)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,14)(10,13)(11,15)(12,16)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,16,14,12)(10,15,13,11)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,13)(10,14)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 9, 2,10)( 3,11, 4,12)( 5,14, 6,13)( 7,15, 8,16)$
$ 8, 8 $ $16$ $8$ $( 1, 9, 3,11, 5,14, 7,15)( 2,10, 4,12, 6,13, 8,16)$
$ 8, 8 $ $16$ $8$ $( 1, 9, 4,12, 5,14, 8,16)( 2,10, 3,11, 6,13, 7,15)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 9, 5,14)( 2,10, 6,13)( 3,11, 7,15)( 4,12, 8,16)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 9, 6,13)( 2,10, 5,14)( 3,11, 8,16)( 4,12, 7,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 9)( 2,10)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 9, 2,10)( 3,15, 4,16)( 5,14, 6,13)( 7,11, 8,12)$
$ 8, 8 $ $16$ $8$ $( 1, 9, 3,15, 5,14, 7,11)( 2,10, 4,16, 6,13, 8,12)$
$ 8, 8 $ $16$ $8$ $( 1, 9, 4,16, 5,14, 8,12)( 2,10, 3,15, 6,13, 7,11)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 9, 5,14)( 2,10, 6,13)( 3,15, 7,11)( 4,16, 8,12)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 9, 6,13)( 2,10, 5,14)( 3,15, 8,12)( 4,16, 7,11)$

Group invariants

Order:  $256=2^{8}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [256, 16894]
Character table: Data not available.