Normalized defining polynomial
\( x^{16} - 4x^{14} + 4x^{12} + 8x^{10} - 17x^{8} + 2x^{6} + 13x^{4} - 7x^{2} + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(56801432950182144\)
\(\medspace = 2^{8}\cdot 3^{14}\cdot 7^{4}\cdot 139^{2}\)
|
| |
Root discriminant: | \(11.15\) |
| |
Galois root discriminant: | $2^{3/2}3^{7/8}7^{1/2}139^{1/2}\approx 230.71854887288097$ | ||
Ramified primes: |
\(2\), \(3\), \(7\), \(139\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( 4 a^{14} - 15 a^{12} + 13 a^{10} + 32 a^{8} - 55 a^{6} - 5 a^{4} + 43 a^{2} - 11 \)
(order $6$)
|
| |
Fundamental units: |
$a$, $3a^{15}-5a^{14}-11a^{13}+\frac{37}{2}a^{12}+\frac{17}{2}a^{11}-\frac{29}{2}a^{10}+\frac{53}{2}a^{9}-44a^{8}-\frac{85}{2}a^{7}+71a^{6}-\frac{13}{2}a^{5}+12a^{4}+\frac{73}{2}a^{3}-\frac{121}{2}a^{2}-10a+\frac{31}{2}$, $\frac{1}{2}a^{15}-3a^{14}-2a^{13}+11a^{12}+\frac{3}{2}a^{11}-\frac{17}{2}a^{10}+\frac{11}{2}a^{9}-\frac{53}{2}a^{8}-\frac{19}{2}a^{7}+\frac{85}{2}a^{6}-2a^{5}+\frac{13}{2}a^{4}+\frac{19}{2}a^{3}-\frac{73}{2}a^{2}-3a+10$, $4a^{15}+\frac{1}{2}a^{14}-14a^{13}-\frac{3}{2}a^{12}+\frac{17}{2}a^{11}+39a^{9}+\frac{13}{2}a^{8}-54a^{7}-\frac{13}{2}a^{6}-17a^{5}-5a^{4}+51a^{3}+9a^{2}-\frac{23}{2}a-\frac{3}{2}$, $3a^{15}-11a^{13}-\frac{1}{2}a^{12}+\frac{17}{2}a^{11}+\frac{3}{2}a^{10}+\frac{53}{2}a^{9}-a^{8}-\frac{85}{2}a^{7}-3a^{6}-\frac{13}{2}a^{5}+3a^{4}+\frac{73}{2}a^{3}+\frac{1}{2}a^{2}-10a-\frac{3}{2}$, $\frac{5}{2}a^{15}-\frac{9}{2}a^{14}-9a^{13}+\frac{33}{2}a^{12}+6a^{11}-\frac{25}{2}a^{10}+\frac{49}{2}a^{9}-40a^{8}-\frac{73}{2}a^{7}+63a^{6}-9a^{5}+\frac{23}{2}a^{4}+\frac{69}{2}a^{3}-\frac{107}{2}a^{2}-\frac{17}{2}a+\frac{29}{2}$, $4a^{15}-\frac{9}{2}a^{14}-14a^{13}+\frac{33}{2}a^{12}+\frac{17}{2}a^{11}-13a^{10}+39a^{9}-\frac{77}{2}a^{8}-54a^{7}+\frac{123}{2}a^{6}-17a^{5}+10a^{4}+51a^{3}-51a^{2}-\frac{23}{2}a+\frac{25}{2}$
|
| |
Regulator: | \( 130.436728236 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 130.436728236 \cdot 1}{6\cdot\sqrt{56801432950182144}}\cr\approx \mathstrut & 0.221568464151 \end{aligned}\]
Galois group
$C_2^2\wr C_2^2.D_4$ (as 16T1728):
A solvable group of order 8192 |
The 152 conjugacy class representatives for $C_2^2\wr C_2^2.D_4$ |
Character table for $C_2^2\wr C_2^2.D_4$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.189.1, 8.0.14895657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.34870903681646592.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.2.8a3.2 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 3$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $$[2, 2]^{4}$$ |
2.8.1.0a1.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
\(7\)
| 7.4.1.0a1.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
7.4.1.0a1.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(139\)
| $\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
139.2.2.2a1.2 | $x^{4} + 276 x^{3} + 19048 x^{2} + 552 x + 143$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
139.4.1.0a1.1 | $x^{4} + 7 x^{2} + 96 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
139.4.1.0a1.1 | $x^{4} + 7 x^{2} + 96 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |