Normalized defining polynomial
\( x^{16} + 2 x^{14} + 16 x^{12} + 65 x^{10} - 126 x^{9} + 172 x^{8} - 144 x^{7} + 137 x^{6} - 186 x^{5} + \cdots + 7 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(14190242108422738176\)
\(\medspace = 2^{8}\cdot 3^{14}\cdot 7^{4}\cdot 13^{6}\)
|
| |
Root discriminant: | \(15.74\) |
| |
Galois root discriminant: | $2^{3/2}3^{7/8}7^{1/2}13^{1/2}\approx 70.55808537927624$ | ||
Ramified primes: |
\(2\), \(3\), \(7\), \(13\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{28\cdots 68}a^{15}+\frac{171635900812509}{28\cdots 68}a^{14}-\frac{12\cdots 81}{28\cdots 68}a^{13}+\frac{48\cdots 35}{28\cdots 68}a^{12}-\frac{25\cdots 65}{28\cdots 68}a^{11}+\frac{73\cdots 19}{28\cdots 68}a^{10}-\frac{14\cdots 71}{35\cdots 21}a^{9}-\frac{41\cdots 83}{14\cdots 84}a^{8}-\frac{47\cdots 41}{14\cdots 84}a^{7}+\frac{833567199264603}{14\cdots 84}a^{6}+\frac{22264898447749}{655519955292376}a^{5}-\frac{25\cdots 11}{28\cdots 68}a^{4}+\frac{89\cdots 05}{28\cdots 68}a^{3}-\frac{73\cdots 17}{28\cdots 68}a^{2}+\frac{95\cdots 07}{28\cdots 68}a-\frac{37\cdots 03}{28\cdots 68}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{4076193189}{12850056952} a^{15} - \frac{2671797213}{12850056952} a^{14} - \frac{10111722155}{12850056952} a^{13} - \frac{6898073547}{12850056952} a^{12} - \frac{70510333935}{12850056952} a^{11} - \frac{46916645247}{12850056952} a^{10} - \frac{37486766943}{1606257119} a^{9} + \frac{156062310935}{6425028476} a^{8} - \frac{258112940495}{6425028476} a^{7} + \frac{127018761617}{6425028476} a^{6} - \frac{419732636451}{12850056952} a^{5} + \frac{496011729783}{12850056952} a^{4} + \frac{21497035083}{12850056952} a^{3} + \frac{161538632161}{12850056952} a^{2} - \frac{217968203579}{12850056952} a + \frac{59905736031}{12850056952} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{18964671625713}{81939994411547}a^{15}+\frac{37790542651971}{163879988823094}a^{14}+\frac{54347340163424}{81939994411547}a^{13}+\frac{52436926556142}{81939994411547}a^{12}+\frac{349093163851566}{81939994411547}a^{11}+\frac{342161318051601}{81939994411547}a^{10}+\frac{30\cdots 03}{163879988823094}a^{9}-\frac{17\cdots 09}{163879988823094}a^{8}+\frac{43\cdots 35}{163879988823094}a^{7}-\frac{817036253785667}{163879988823094}a^{6}+\frac{37\cdots 51}{163879988823094}a^{5}-\frac{15\cdots 96}{81939994411547}a^{4}-\frac{11\cdots 67}{163879988823094}a^{3}-\frac{19\cdots 69}{163879988823094}a^{2}+\frac{10\cdots 23}{163879988823094}a-\frac{274304604972033}{163879988823094}$, $\frac{6666191185530}{25348343594939}a^{15}+\frac{12319298452015}{50696687189878}a^{14}+\frac{18246530439955}{25348343594939}a^{13}+\frac{16401982836546}{25348343594939}a^{12}+\frac{119903983432235}{25348343594939}a^{11}+\frac{109364314135018}{25348343594939}a^{10}+\frac{10\cdots 43}{50696687189878}a^{9}-\frac{734438124751833}{50696687189878}a^{8}+\frac{15\cdots 07}{50696687189878}a^{7}-\frac{413941645876441}{50696687189878}a^{6}+\frac{28802927313339}{1178992725346}a^{5}-\frac{627283592058569}{25348343594939}a^{4}-\frac{415628715440253}{50696687189878}a^{3}-\frac{691689668052829}{50696687189878}a^{2}+\frac{527207962226073}{50696687189878}a-\frac{71793919104659}{50696687189878}$, $\frac{34\cdots 07}{70\cdots 42}a^{15}+\frac{33\cdots 63}{14\cdots 84}a^{14}+\frac{81\cdots 01}{70\cdots 42}a^{13}+\frac{86\cdots 89}{14\cdots 84}a^{12}+\frac{29\cdots 57}{35\cdots 21}a^{11}+\frac{59\cdots 53}{14\cdots 84}a^{10}+\frac{24\cdots 69}{70\cdots 42}a^{9}-\frac{31\cdots 89}{70\cdots 42}a^{8}+\frac{23\cdots 46}{35\cdots 21}a^{7}-\frac{28\cdots 25}{70\cdots 42}a^{6}+\frac{86\cdots 35}{163879988823094}a^{5}-\frac{92\cdots 43}{14\cdots 84}a^{4}+\frac{14\cdots 56}{35\cdots 21}a^{3}-\frac{21\cdots 95}{14\cdots 84}a^{2}+\frac{10\cdots 43}{35\cdots 21}a-\frac{12\cdots 87}{14\cdots 84}$, $\frac{10\cdots 01}{28\cdots 68}a^{15}+\frac{41\cdots 43}{28\cdots 68}a^{14}+\frac{23\cdots 59}{28\cdots 68}a^{13}+\frac{10\cdots 97}{28\cdots 68}a^{12}+\frac{17\cdots 35}{28\cdots 68}a^{11}+\frac{71\cdots 45}{28\cdots 68}a^{10}+\frac{18\cdots 81}{70\cdots 42}a^{9}-\frac{52\cdots 13}{14\cdots 84}a^{8}+\frac{75\cdots 47}{14\cdots 84}a^{7}-\frac{48\cdots 47}{14\cdots 84}a^{6}+\frac{26\cdots 41}{655519955292376}a^{5}-\frac{15\cdots 45}{28\cdots 68}a^{4}+\frac{18\cdots 29}{28\cdots 68}a^{3}-\frac{29\cdots 51}{28\cdots 68}a^{2}+\frac{68\cdots 11}{28\cdots 68}a-\frac{24\cdots 21}{28\cdots 68}$, $\frac{53\cdots 93}{28\cdots 68}a^{15}+\frac{45\cdots 23}{28\cdots 68}a^{14}+\frac{14\cdots 19}{28\cdots 68}a^{13}+\frac{12\cdots 09}{28\cdots 68}a^{12}+\frac{95\cdots 07}{28\cdots 68}a^{11}+\frac{82\cdots 57}{28\cdots 68}a^{10}+\frac{51\cdots 73}{35\cdots 21}a^{9}-\frac{15\cdots 67}{14\cdots 84}a^{8}+\frac{30\cdots 73}{14\cdots 84}a^{7}-\frac{84\cdots 97}{14\cdots 84}a^{6}+\frac{11\cdots 25}{655519955292376}a^{5}-\frac{50\cdots 53}{28\cdots 68}a^{4}-\frac{12\cdots 63}{28\cdots 68}a^{3}-\frac{24\cdots 11}{28\cdots 68}a^{2}+\frac{20\cdots 59}{28\cdots 68}a-\frac{28\cdots 09}{28\cdots 68}$, $\frac{44\cdots 61}{28\cdots 68}a^{15}+\frac{78\cdots 67}{28\cdots 68}a^{14}+\frac{16\cdots 15}{28\cdots 68}a^{13}+\frac{22\cdots 17}{28\cdots 68}a^{12}+\frac{92\cdots 35}{28\cdots 68}a^{11}+\frac{14\cdots 49}{28\cdots 68}a^{10}+\frac{10\cdots 67}{70\cdots 42}a^{9}+\frac{29\cdots 95}{14\cdots 84}a^{8}+\frac{19\cdots 83}{14\cdots 84}a^{7}+\frac{11\cdots 05}{14\cdots 84}a^{6}+\frac{10\cdots 65}{655519955292376}a^{5}-\frac{13\cdots 93}{28\cdots 68}a^{4}-\frac{31\cdots 31}{28\cdots 68}a^{3}-\frac{40\cdots 99}{28\cdots 68}a^{2}-\frac{38\cdots 25}{28\cdots 68}a+\frac{66\cdots 03}{28\cdots 68}$, $\frac{121091134839045}{70\cdots 42}a^{15}+\frac{336701232084069}{70\cdots 42}a^{14}+\frac{276565925272664}{35\cdots 21}a^{13}+\frac{975084281314225}{70\cdots 42}a^{12}+\frac{14\cdots 39}{35\cdots 21}a^{11}+\frac{31\cdots 85}{35\cdots 21}a^{10}+\frac{13\cdots 71}{70\cdots 42}a^{9}+\frac{11\cdots 57}{70\cdots 42}a^{8}+\frac{34\cdots 37}{70\cdots 42}a^{7}+\frac{24\cdots 27}{70\cdots 42}a^{6}+\frac{50520348995566}{81939994411547}a^{5}+\frac{51\cdots 40}{35\cdots 21}a^{4}-\frac{28\cdots 75}{70\cdots 42}a^{3}-\frac{47\cdots 64}{35\cdots 21}a^{2}-\frac{36\cdots 81}{70\cdots 42}a+\frac{25\cdots 97}{70\cdots 42}$
|
| |
Regulator: | \( 2827.57534373 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2827.57534373 \cdot 1}{6\cdot\sqrt{14190242108422738176}}\cr\approx \mathstrut & 0.303883402072 \end{aligned}\]
Galois group
$D_4^2:D_4$ (as 16T877):
A solvable group of order 512 |
The 53 conjugacy class representatives for $D_4^2:D_4$ |
Character table for $D_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.117.1, 4.0.2457.1, 4.0.189.1, 8.0.6036849.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.21495277986723201024.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
2.4.2.8a3.1 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 3$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $$[2, 2]^{4}$$ | |
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
\(7\)
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
7.4.1.0a1.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
7.4.1.0a1.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(13\)
| 13.4.1.0a1.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
13.2.2.2a1.1 | $x^{4} + 24 x^{3} + 148 x^{2} + 61 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |