Show commands: Magma
Group invariants
Abstract group: | $D_4^2:D_4$ |
| |
Order: | $512=2^{9}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $877$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,12,2,11)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)$, $(1,5)(2,6)(3,7)(4,8)(9,16)(10,15)(11,13)(12,14)$, $(9,10)(11,12)(13,14)(15,16)$, $(1,4)(2,3)(5,7)(6,8)(9,12)(10,11)(13,15)(14,16)$, $(1,12,2,11)(3,9,4,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $D_{4}$ x 28, $C_2^3$ x 15 $16$: $D_4\times C_2$ x 42, $C_2^4$ $32$: $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7 $64$: 16T105 x 7 $128$: 16T223, 16T239, 16T325 $256$: 32T3930 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$
Low degree siblings
16T837 x 8, 16T877 x 7, 16T935 x 8, 32T10047 x 8, 32T10048 x 4, 32T10049 x 4, 32T10050 x 8, 32T10051 x 4, 32T10052 x 4, 32T10053 x 4, 32T10054 x 4, 32T10055 x 4, 32T10056 x 4, 32T10057 x 4, 32T10058 x 4, 32T10059 x 4, 32T10060 x 4, 32T10061 x 4, 32T10326 x 8, 32T10327 x 4, 32T10328 x 4, 32T10329 x 4, 32T10330 x 4, 32T10331 x 4, 32T10332 x 4, 32T10333 x 4, 32T10334 x 4, 32T10335 x 4, 32T10336 x 4, 32T10337 x 4, 32T10338 x 4, 32T10339 x 4, 32T10646 x 4, 32T10647 x 4, 32T10648 x 4, 32T10649 x 4, 32T10650 x 4, 32T10651 x 4, 32T10652 x 4, 32T10653 x 4, 32T10654 x 4, 32T10655 x 4, 32T10656 x 4, 32T10657 x 4, 32T10658 x 4, 32T22005 x 4, 32T22085 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
53 x 53 character table
Regular extensions
Data not computed