Normalized defining polynomial
\( x^{16} + 6x^{12} + 87x^{8} + 54x^{4} + 9 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(328683126924509184\)
\(\medspace = 2^{36}\cdot 3^{14}\)
|
| |
Root discriminant: | \(12.44\) |
| |
Galois root discriminant: | $2^{21/8}3^{7/8}\approx 16.131874566820663$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $D_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\zeta_{12})\) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{6}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{6}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{276}a^{12}-\frac{1}{12}a^{10}+\frac{2}{69}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{23}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{13}{92}$, $\frac{1}{276}a^{13}-\frac{1}{12}a^{11}+\frac{2}{69}a^{9}-\frac{1}{4}a^{7}+\frac{21}{46}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{33}{92}a-\frac{1}{2}$, $\frac{1}{828}a^{14}-\frac{5}{276}a^{10}-\frac{1}{12}a^{8}+\frac{19}{276}a^{6}+\frac{1}{4}a^{4}-\frac{3}{23}a^{2}+\frac{1}{4}$, $\frac{1}{828}a^{15}-\frac{5}{276}a^{11}-\frac{1}{12}a^{9}+\frac{19}{276}a^{7}+\frac{1}{4}a^{5}-\frac{3}{23}a^{3}+\frac{1}{4}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( \frac{97}{414} a^{14} + \frac{91}{69} a^{10} + \frac{1370}{69} a^{6} + \frac{239}{46} a^{2} \)
(order $12$)
|
| |
Fundamental units: |
$\frac{37}{828}a^{14}+\frac{3}{92}a^{12}+\frac{17}{69}a^{10}+\frac{49}{276}a^{8}+\frac{262}{69}a^{6}+\frac{263}{92}a^{4}+\frac{39}{92}a^{2}+\frac{11}{23}$, $\frac{121}{828}a^{14}-\frac{1}{23}a^{12}+\frac{223}{276}a^{10}-\frac{73}{276}a^{8}+\frac{3403}{276}a^{6}-\frac{343}{92}a^{4}+\frac{51}{23}a^{2}-\frac{143}{92}$, $\frac{55}{207}a^{14}-\frac{10}{69}a^{12}+\frac{209}{138}a^{10}-\frac{19}{23}a^{8}+\frac{3125}{138}a^{6}-\frac{282}{23}a^{4}+\frac{359}{46}a^{2}-\frac{77}{23}$, $\frac{41}{138}a^{15}-\frac{13}{828}a^{14}-\frac{5}{69}a^{13}+\frac{1}{23}a^{12}+\frac{118}{69}a^{11}-\frac{9}{92}a^{10}-\frac{19}{46}a^{9}+\frac{73}{276}a^{8}+\frac{585}{23}a^{7}-\frac{385}{276}a^{6}-\frac{141}{23}a^{5}+\frac{343}{92}a^{4}+\frac{228}{23}a^{3}-\frac{30}{23}a^{2}-\frac{50}{23}a+\frac{189}{92}$, $\frac{41}{276}a^{15}-\frac{40}{207}a^{14}-\frac{49}{276}a^{13}+\frac{5}{69}a^{12}+\frac{59}{69}a^{11}-\frac{76}{69}a^{10}-\frac{277}{276}a^{9}+\frac{19}{46}a^{8}+\frac{585}{46}a^{7}-\frac{2279}{138}a^{6}-\frac{1391}{92}a^{5}+\frac{141}{23}a^{4}+\frac{433}{92}a^{3}-\frac{259}{46}a^{2}-\frac{199}{46}a+\frac{77}{46}$, $\frac{3}{23}a^{15}-\frac{2}{69}a^{14}+\frac{41}{276}a^{12}+\frac{49}{69}a^{11}-\frac{41}{276}a^{10}+\frac{59}{69}a^{8}+\frac{503}{46}a^{7}-\frac{221}{92}a^{6}+\frac{585}{46}a^{4}+\frac{21}{23}a^{3}+\frac{35}{92}a^{2}-\frac{1}{2}a+\frac{433}{92}$, $\frac{61}{207}a^{15}+\frac{2}{69}a^{14}-\frac{7}{92}a^{13}-\frac{1}{276}a^{12}+\frac{153}{92}a^{11}+\frac{41}{276}a^{10}-\frac{61}{138}a^{9}-\frac{2}{69}a^{8}+\frac{6913}{276}a^{7}+\frac{221}{92}a^{6}-\frac{303}{46}a^{5}-\frac{21}{46}a^{4}+\frac{637}{92}a^{3}-\frac{35}{92}a^{2}-\frac{233}{92}a-\frac{33}{92}$
|
| |
Regulator: | \( 763.555572776 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 763.555572776 \cdot 1}{12\cdot\sqrt{328683126924509184}}\cr\approx \mathstrut & 0.269593642787 \end{aligned}\]
Galois group
A solvable group of order 32 |
The 11 conjugacy class representatives for $D_8:C_2$ |
Character table for $D_8:C_2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), 4.0.432.1 x2, 4.2.1728.1 x2, \(\Q(\zeta_{12})\), 8.0.143327232.2 x2, 8.0.143327232.1 x2, 8.0.2985984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{8}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.36b2.32 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 268 x^{12} + 520 x^{11} + 846 x^{10} + 1176 x^{9} + 1407 x^{8} + 1452 x^{7} + 1282 x^{6} + 960 x^{5} + 594 x^{4} + 296 x^{3} + 110 x^{2} + 28 x + 17$ | $8$ | $2$ | $36$ | 16T35 | $$[2, 2, 3, 3]^{2}$$ |
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |