Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 76 x^{12} - 68 x^{11} + 4 x^{10} + 112 x^{9} - 173 x^{8} + 84 x^{7} + 60 x^{6} - 96 x^{5} + 36 x^{4} + 12 x^{3} - 12 x^{2} + 3 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5258930030792146944=2^{40}\cdot 3^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4655128009} a^{15} + \frac{71025532}{4655128009} a^{14} - \frac{460553731}{4655128009} a^{13} - \frac{332999777}{4655128009} a^{12} + \frac{1444014147}{4655128009} a^{11} + \frac{1851210114}{4655128009} a^{10} + \frac{1170684292}{4655128009} a^{9} - \frac{1984153481}{4655128009} a^{8} + \frac{2259873797}{4655128009} a^{7} - \frac{1125008428}{4655128009} a^{6} + \frac{119339446}{665018287} a^{5} - \frac{1791019858}{4655128009} a^{4} - \frac{1852867180}{4655128009} a^{3} + \frac{423301631}{4655128009} a^{2} - \frac{1113774934}{4655128009} a + \frac{147710267}{4655128009}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1056864}{8417953} a^{15} + \frac{6937268}{8417953} a^{14} - \frac{17975544}{8417953} a^{13} + \frac{20650356}{8417953} a^{12} - \frac{7605228}{8417953} a^{11} - \frac{24228212}{8417953} a^{10} + \frac{81828208}{8417953} a^{9} - \frac{120460447}{8417953} a^{8} + \frac{43325020}{8417953} a^{7} + \frac{99412412}{8417953} a^{6} - \frac{133231216}{8417953} a^{5} + \frac{31428676}{8417953} a^{4} + \frac{46687116}{8417953} a^{3} - \frac{41744748}{8417953} a^{2} - \frac{156384}{8417953} a + \frac{12069362}{8417953} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3183.80345039 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \), 4.0.432.1, 4.0.1728.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), 8.0.143327232.2, 8.0.143327232.1, 8.0.47775744.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |