Normalized defining polynomial
\( x^{14} - 5 x^{13} - 31 x^{12} + 309 x^{11} + 262 x^{10} - 8842 x^{9} + 67732 x^{8} - 350971 x^{7} + \cdots + 300251687 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-119254061410789267361233458448997791\)
\(\medspace = -\,31^{7}\cdot 113^{12}\)
|
| |
| Root discriminant: | \(320.23\) |
| |
| Galois root discriminant: | $31^{1/2}113^{6/7}\approx 320.2302614292546$ | ||
| Ramified primes: |
\(31\), \(113\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-31}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{14}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3503=31\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3503}(1,·)$, $\chi_{3503}(30,·)$, $\chi_{3503}(340,·)$, $\chi_{3503}(807,·)$, $\chi_{3503}(900,·)$, $\chi_{3503}(1146,·)$, $\chi_{3503}(1179,·)$, $\chi_{3503}(1239,·)$, $\chi_{3503}(1518,·)$, $\chi_{3503}(2140,·)$, $\chi_{3503}(2479,·)$, $\chi_{3503}(2853,·)$, $\chi_{3503}(3192,·)$, $\chi_{3503}(3194,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{64}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11461}a^{12}-\frac{4666}{11461}a^{11}-\frac{3507}{11461}a^{10}-\frac{2507}{11461}a^{9}+\frac{1488}{11461}a^{8}-\frac{357}{11461}a^{7}-\frac{2740}{11461}a^{6}-\frac{647}{11461}a^{5}-\frac{953}{11461}a^{4}-\frac{3851}{11461}a^{3}+\frac{4759}{11461}a^{2}+\frac{1311}{11461}a+\frac{4395}{11461}$, $\frac{1}{41\cdots 39}a^{13}-\frac{16\cdots 75}{41\cdots 39}a^{12}+\frac{49\cdots 14}{41\cdots 39}a^{11}+\frac{92\cdots 41}{41\cdots 39}a^{10}-\frac{11\cdots 82}{41\cdots 39}a^{9}+\frac{54\cdots 77}{41\cdots 39}a^{8}+\frac{20\cdots 24}{41\cdots 39}a^{7}-\frac{66\cdots 19}{26\cdots 27}a^{6}+\frac{20\cdots 78}{41\cdots 39}a^{5}-\frac{99\cdots 28}{41\cdots 39}a^{4}-\frac{37\cdots 02}{41\cdots 39}a^{3}+\frac{51\cdots 18}{41\cdots 39}a^{2}+\frac{20\cdots 80}{41\cdots 39}a+\frac{12\cdots 57}{41\cdots 39}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{381066}$, which has order $1524264$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{381066}$, which has order $1524264$ (assuming GRH) |
| |
| Relative class number: | $1524264$ (assuming GRH) |
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{89\cdots 20}{41\cdots 39}a^{13}-\frac{67\cdots 17}{41\cdots 39}a^{12}-\frac{20\cdots 90}{41\cdots 39}a^{11}+\frac{38\cdots 84}{41\cdots 39}a^{10}-\frac{41\cdots 13}{41\cdots 39}a^{9}-\frac{10\cdots 32}{41\cdots 39}a^{8}+\frac{85\cdots 82}{41\cdots 39}a^{7}-\frac{40\cdots 20}{41\cdots 39}a^{6}+\frac{16\cdots 87}{41\cdots 39}a^{5}-\frac{53\cdots 42}{41\cdots 39}a^{4}+\frac{18\cdots 42}{41\cdots 39}a^{3}-\frac{44\cdots 02}{41\cdots 39}a^{2}+\frac{86\cdots 49}{41\cdots 39}a-\frac{11\cdots 68}{41\cdots 39}$, $\frac{26\cdots 84}{41\cdots 39}a^{13}+\frac{27\cdots 39}{41\cdots 39}a^{12}-\frac{25\cdots 62}{41\cdots 39}a^{11}-\frac{94\cdots 92}{41\cdots 39}a^{10}+\frac{13\cdots 15}{41\cdots 39}a^{9}+\frac{12\cdots 87}{41\cdots 39}a^{8}-\frac{25\cdots 06}{41\cdots 39}a^{7}+\frac{11\cdots 44}{41\cdots 39}a^{6}-\frac{54\cdots 11}{41\cdots 39}a^{5}+\frac{26\cdots 62}{41\cdots 39}a^{4}-\frac{48\cdots 38}{41\cdots 39}a^{3}+\frac{33\cdots 41}{41\cdots 39}a^{2}-\frac{23\cdots 43}{41\cdots 39}a+\frac{12\cdots 40}{41\cdots 39}$, $\frac{28\cdots 40}{41\cdots 39}a^{13}+\frac{40\cdots 97}{41\cdots 39}a^{12}-\frac{17\cdots 06}{41\cdots 39}a^{11}+\frac{12\cdots 33}{41\cdots 39}a^{10}+\frac{68\cdots 30}{41\cdots 39}a^{9}-\frac{10\cdots 47}{41\cdots 39}a^{8}-\frac{58\cdots 30}{41\cdots 39}a^{7}+\frac{16\cdots 27}{41\cdots 39}a^{6}-\frac{63\cdots 78}{41\cdots 39}a^{5}+\frac{78\cdots 60}{41\cdots 39}a^{4}-\frac{11\cdots 28}{41\cdots 39}a^{3}+\frac{12\cdots 62}{41\cdots 39}a^{2}-\frac{95\cdots 40}{41\cdots 39}a+\frac{73\cdots 48}{41\cdots 39}$, $\frac{41\cdots 62}{36\cdots 99}a^{13}-\frac{17\cdots 17}{36\cdots 99}a^{12}-\frac{13\cdots 78}{36\cdots 99}a^{11}+\frac{11\cdots 36}{36\cdots 99}a^{10}+\frac{16\cdots 71}{36\cdots 99}a^{9}-\frac{33\cdots 69}{36\cdots 99}a^{8}+\frac{25\cdots 22}{36\cdots 99}a^{7}-\frac{13\cdots 24}{36\cdots 99}a^{6}+\frac{58\cdots 59}{36\cdots 99}a^{5}-\frac{18\cdots 48}{36\cdots 99}a^{4}+\frac{80\cdots 02}{36\cdots 99}a^{3}-\frac{14\cdots 62}{36\cdots 99}a^{2}+\frac{37\cdots 30}{36\cdots 99}a-\frac{26\cdots 62}{36\cdots 99}$, $\frac{17\cdots 00}{41\cdots 39}a^{13}+\frac{35\cdots 27}{41\cdots 39}a^{12}-\frac{23\cdots 58}{41\cdots 39}a^{11}-\frac{14\cdots 76}{41\cdots 39}a^{10}+\frac{13\cdots 43}{41\cdots 39}a^{9}+\frac{25\cdots 41}{41\cdots 39}a^{8}-\frac{34\cdots 50}{41\cdots 39}a^{7}+\frac{16\cdots 32}{41\cdots 39}a^{6}-\frac{70\cdots 51}{41\cdots 39}a^{5}+\frac{31\cdots 53}{41\cdots 39}a^{4}-\frac{64\cdots 48}{41\cdots 39}a^{3}+\frac{36\cdots 86}{41\cdots 39}a^{2}-\frac{31\cdots 47}{41\cdots 39}a+\frac{14\cdots 16}{41\cdots 39}$, $\frac{41\cdots 78}{41\cdots 39}a^{13}-\frac{11\cdots 58}{41\cdots 39}a^{12}+\frac{24\cdots 98}{41\cdots 39}a^{11}+\frac{54\cdots 04}{41\cdots 39}a^{10}-\frac{27\cdots 96}{41\cdots 39}a^{9}-\frac{12\cdots 86}{41\cdots 39}a^{8}+\frac{12\cdots 38}{41\cdots 39}a^{7}-\frac{62\cdots 51}{41\cdots 39}a^{6}+\frac{26\cdots 55}{41\cdots 39}a^{5}-\frac{10\cdots 07}{41\cdots 39}a^{4}+\frac{28\cdots 63}{41\cdots 39}a^{3}-\frac{10\cdots 48}{41\cdots 39}a^{2}+\frac{13\cdots 76}{41\cdots 39}a-\frac{37\cdots 88}{41\cdots 39}$
|
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 222748.97284811488 \cdot 1524264}{2\cdot\sqrt{119254061410789267361233458448997791}}\cr\approx \mathstrut & 0.190050228543587 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.14.0.1}{14} }$ | ${\href{/padicField/5.7.0.1}{7} }^{2}$ | ${\href{/padicField/7.7.0.1}{7} }^{2}$ | ${\href{/padicField/11.14.0.1}{14} }$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.14.0.1}{14} }$ | R | ${\href{/padicField/37.14.0.1}{14} }$ | ${\href{/padicField/41.7.0.1}{7} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }$ | ${\href{/padicField/47.7.0.1}{7} }^{2}$ | ${\href{/padicField/53.14.0.1}{14} }$ | ${\href{/padicField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(31\)
| 31.7.2.7a1.2 | $x^{14} + 2 x^{8} + 56 x^{7} + x^{2} + 56 x + 815$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(113\)
| 113.1.7.6a1.1 | $x^{7} + 113$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
| 113.1.7.6a1.1 | $x^{7} + 113$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *14 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *14 | 1.31.2t1.a.a | $1$ | $ 31 $ | \(\Q(\sqrt{-31}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| *14 | 1.113.7t1.a.d | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ |
| *14 | 1.3503.14t1.a.a | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ |
| *14 | 1.113.7t1.a.a | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ |
| *14 | 1.3503.14t1.a.c | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ |
| *14 | 1.113.7t1.a.e | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ |
| *14 | 1.3503.14t1.a.e | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ |
| *14 | 1.113.7t1.a.b | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ |
| *14 | 1.3503.14t1.a.b | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ |
| *14 | 1.113.7t1.a.f | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ |
| *14 | 1.3503.14t1.a.f | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ |
| *14 | 1.113.7t1.a.c | $1$ | $ 113 $ | 7.7.2081951752609.1 | $C_7$ (as 7T1) | $0$ | $1$ |
| *14 | 1.3503.14t1.a.d | $1$ | $ 31 \cdot 113 $ | 14.0.119254061410789267361233458448997791.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ |