Properties

Label 3503.807
Modulus $3503$
Conductor $113$
Order $7$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3503, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([0,6]))
 
Copy content pari:[g,chi] = znchar(Mod(807,3503))
 

Basic properties

Modulus: \(3503\)
Conductor: \(113\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(7\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{113}(16,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3503.l

\(\chi_{3503}(807,\cdot)\) \(\chi_{3503}(900,\cdot)\) \(\chi_{3503}(1179,\cdot)\) \(\chi_{3503}(2140,\cdot)\) \(\chi_{3503}(2853,\cdot)\) \(\chi_{3503}(3194,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 7.7.2081951752609.1

Values on generators

\((3165,342)\) → \((1,e\left(\frac{3}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 3503 }(807, a) \) \(1\)\(1\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{5}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3503 }(807,a) \;\) at \(\;a = \) e.g. 2