sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([0,8]))
pari:[g,chi] = znchar(Mod(2140,3503))
\(\chi_{3503}(807,\cdot)\)
\(\chi_{3503}(900,\cdot)\)
\(\chi_{3503}(1179,\cdot)\)
\(\chi_{3503}(2140,\cdot)\)
\(\chi_{3503}(2853,\cdot)\)
\(\chi_{3503}(3194,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((1,e\left(\frac{4}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(2140, a) \) |
\(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage:chi.jacobi_sum(n)