Properties

Label 3503.30
Modulus $3503$
Conductor $3503$
Order $14$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3503, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,12]))
 
Copy content pari:[g,chi] = znchar(Mod(30,3503))
 

Basic properties

Modulus: \(3503\)
Conductor: \(3503\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3503.u

\(\chi_{3503}(30,\cdot)\) \(\chi_{3503}(1146,\cdot)\) \(\chi_{3503}(1239,\cdot)\) \(\chi_{3503}(1518,\cdot)\) \(\chi_{3503}(2479,\cdot)\) \(\chi_{3503}(3192,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((3165,342)\) → \((-1,e\left(\frac{6}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 3503 }(30, a) \) \(-1\)\(1\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{13}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3503 }(30,a) \;\) at \(\;a = \) e.g. 2