sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,12]))
pari:[g,chi] = znchar(Mod(30,3503))
| Modulus: | \(3503\) | |
| Conductor: | \(3503\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(14\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3503}(30,\cdot)\)
\(\chi_{3503}(1146,\cdot)\)
\(\chi_{3503}(1239,\cdot)\)
\(\chi_{3503}(1518,\cdot)\)
\(\chi_{3503}(2479,\cdot)\)
\(\chi_{3503}(3192,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((-1,e\left(\frac{6}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(30, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) |
sage:chi.jacobi_sum(n)