| L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.623 + 0.781i)3-s + (−0.900 − 0.433i)4-s + (0.623 + 0.781i)5-s + (−0.623 − 0.781i)6-s + (0.623 − 0.781i)7-s + (0.623 − 0.781i)8-s + (−0.222 − 0.974i)9-s + (−0.900 + 0.433i)10-s + (0.900 − 0.433i)11-s + (0.900 − 0.433i)12-s + (−0.623 + 0.781i)13-s + (0.623 + 0.781i)14-s − 15-s + (0.623 + 0.781i)16-s + (0.222 − 0.974i)17-s + ⋯ |
| L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.623 + 0.781i)3-s + (−0.900 − 0.433i)4-s + (0.623 + 0.781i)5-s + (−0.623 − 0.781i)6-s + (0.623 − 0.781i)7-s + (0.623 − 0.781i)8-s + (−0.222 − 0.974i)9-s + (−0.900 + 0.433i)10-s + (0.900 − 0.433i)11-s + (0.900 − 0.433i)12-s + (−0.623 + 0.781i)13-s + (0.623 + 0.781i)14-s − 15-s + (0.623 + 0.781i)16-s + (0.222 − 0.974i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3503 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3503 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.272152038 - 0.3256289506i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.272152038 - 0.3256289506i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7749391945 + 0.3989763260i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7749391945 + 0.3989763260i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 31 | \( 1 \) |
| 113 | \( 1 \) |
| good | 2 | \( 1 + (-0.222 + 0.974i)T \) |
| 3 | \( 1 + (-0.623 + 0.781i)T \) |
| 5 | \( 1 + (0.623 + 0.781i)T \) |
| 7 | \( 1 + (0.623 - 0.781i)T \) |
| 11 | \( 1 + (0.900 - 0.433i)T \) |
| 13 | \( 1 + (-0.623 + 0.781i)T \) |
| 17 | \( 1 + (0.222 - 0.974i)T \) |
| 19 | \( 1 + (0.623 - 0.781i)T \) |
| 23 | \( 1 + (-0.623 - 0.781i)T \) |
| 29 | \( 1 + (0.222 - 0.974i)T \) |
| 37 | \( 1 + (0.900 - 0.433i)T \) |
| 41 | \( 1 + (-0.900 - 0.433i)T \) |
| 43 | \( 1 + (0.222 - 0.974i)T \) |
| 47 | \( 1 + (-0.900 - 0.433i)T \) |
| 53 | \( 1 + (0.900 + 0.433i)T \) |
| 59 | \( 1 + (0.623 - 0.781i)T \) |
| 61 | \( 1 + (0.900 - 0.433i)T \) |
| 67 | \( 1 + (-0.900 + 0.433i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.900 + 0.433i)T \) |
| 83 | \( 1 + (0.222 - 0.974i)T \) |
| 89 | \( 1 + (0.222 + 0.974i)T \) |
| 97 | \( 1 + (0.623 + 0.781i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.46758367410165532574085669579, −17.81828788491878079446886782522, −17.67191858128149802809346115313, −16.82108463856223749835074761445, −16.31757775581696532224469302860, −14.890216170804574413148064977358, −14.35457499991803229590883958616, −13.46826321272869993561017279954, −12.82377739011074317689251721927, −12.23917265029896616504995483573, −11.89427757191259265912063979501, −11.16075210897838125093779103133, −10.11683976975736710841211989514, −9.73575840701671783925000824871, −8.72857311977986231615701301966, −8.16033508889362042605873216875, −7.54348386945909668141962055050, −6.27644706567788908837700800047, −5.54698168570578757524921490145, −5.05214363367572557812063774908, −4.22888724491800652437986606600, −3.05665393093055949380732494820, −2.083848550560623699447886158532, −1.48740806452266545843993913187, −1.05943560151455409170922856397,
0.281831574679902384057156353576, 1.009200293453759052483156857313, 2.28320243133826661616440807819, 3.5759839956088976880894771146, 4.223411708812182681927334609592, 4.9783883313315925395602665534, 5.60136117179497302945660941682, 6.6269819843053696894874609421, 6.80765906188946418756948238510, 7.70127198189264837817867313915, 8.77652861516596279580760389894, 9.495103396069222727691611258247, 9.937718530526644434739975551501, 10.66357293158250098276821450358, 11.45435190771926241716427244705, 11.98281927329844692776835516926, 13.46853344581227377049449545968, 13.913148355725435981884404744534, 14.55734674193090158501571796584, 14.93069071772522859890639019222, 15.98851877047432640043912315527, 16.49085160114251638056602858060, 17.18271925342339329670482330516, 17.54579560496736402757672561688, 18.24075661950843594643767061494