\\ Pari/GP code for working with number field 14.0.119254061410789267361233458448997791.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^14 - 5*y^13 - 31*y^12 + 309*y^11 + 262*y^10 - 8842*y^9 + 67732*y^8 - 350971*y^7 + 1534032*y^6 - 4949688*y^5 + 19407809*y^4 - 39113311*y^3 + 126961596*y^2 - 125321277*y + 300251687, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^14 - 5*x^13 - 31*x^12 + 309*x^11 + 262*x^10 - 8842*x^9 + 67732*x^8 - 350971*x^7 + 1534032*x^6 - 4949688*x^5 + 19407809*x^4 - 39113311*x^3 + 126961596*x^2 - 125321277*x + 300251687, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])