Normalized defining polynomial
\( x^{10} - 4 x^{9} + 40 x^{8} + 94 x^{7} + 8 x^{6} + 3040 x^{5} + 7009 x^{4} + 2840 x^{3} + 139835 x^{2} + \cdots + 134563 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-24570065271803314195279\)
\(\medspace = -\,41^{8}\cdot 79^{5}\)
|
| |
| Root discriminant: | \(173.40\) |
| |
| Galois root discriminant: | $41^{4/5}79^{1/2}\approx 173.3966213773553$ | ||
| Ramified primes: |
\(41\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-79}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-79}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{82}a^{5}-\frac{1}{41}a^{4}+\frac{9}{41}a^{3}+\frac{1}{82}a^{2}-\frac{33}{82}a+\frac{1}{82}$, $\frac{1}{82}a^{6}+\frac{7}{41}a^{4}+\frac{37}{82}a^{3}-\frac{31}{82}a^{2}+\frac{17}{82}a+\frac{1}{41}$, $\frac{1}{82}a^{7}-\frac{17}{82}a^{4}-\frac{37}{82}a^{3}+\frac{3}{82}a^{2}-\frac{14}{41}a-\frac{7}{41}$, $\frac{1}{328}a^{8}-\frac{1}{164}a^{7}-\frac{1}{328}a^{6}-\frac{1}{164}a^{5}-\frac{47}{328}a^{4}-\frac{25}{82}a^{3}+\frac{3}{82}a^{2}-\frac{15}{82}a-\frac{1}{8}$, $\frac{1}{318358502976}a^{9}-\frac{305324813}{318358502976}a^{8}+\frac{291305407}{106119500992}a^{7}+\frac{1354581241}{318358502976}a^{6}-\frac{1449858041}{318358502976}a^{5}-\frac{7682861}{2588280512}a^{4}+\frac{8760330491}{39794812872}a^{3}+\frac{2875832999}{9948703218}a^{2}-\frac{570077381}{318358502976}a-\frac{5261616917}{318358502976}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{5}\times C_{15}$, which has order $75$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}\times C_{15}$, which has order $75$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{141073098859}{26529875248}a^{9}-\frac{727947477875}{26529875248}a^{8}+\frac{6564274143463}{26529875248}a^{7}+\frac{6000313881967}{26529875248}a^{6}-\frac{3478887151803}{26529875248}a^{5}+\frac{459614868899687}{26529875248}a^{4}+\frac{35220276660886}{1658117203}a^{3}+\frac{16993578834077}{3316234406}a^{2}+\frac{21\cdots 13}{26529875248}a+\frac{15\cdots 97}{26529875248}$, $\frac{5181023061}{13264937624}a^{9}+\frac{2945722221}{13264937624}a^{8}+\frac{120552605581}{13264937624}a^{7}+\frac{1128873972367}{13264937624}a^{6}+\frac{2810919525831}{13264937624}a^{5}+\frac{8627766427403}{13264937624}a^{4}+\frac{141979897297}{40441883}a^{3}+\frac{10548092133337}{1658117203}a^{2}+\frac{58751451619383}{13264937624}a+\frac{13152531729121}{13264937624}$, $\frac{3715587531}{26529875248}a^{9}+\frac{64073756185}{26529875248}a^{8}+\frac{218236061007}{26529875248}a^{7}+\frac{2838448640723}{26529875248}a^{6}+\frac{17900526261629}{26529875248}a^{5}+\frac{66037716058323}{26529875248}a^{4}+\frac{17407656460620}{1658117203}a^{3}+\frac{111437620175873}{3316234406}a^{2}+\frac{11\cdots 05}{26529875248}a+\frac{463806358477745}{26529875248}$, $\frac{105635537822989}{79589625744}a^{9}-\frac{809469862374473}{79589625744}a^{8}-\frac{159265154499973}{26529875248}a^{7}+\frac{927854405396797}{79589625744}a^{6}-\frac{65\cdots 73}{79589625744}a^{5}-\frac{24\cdots 85}{26529875248}a^{4}-\frac{802303710946981}{9948703218}a^{3}-\frac{43\cdots 93}{9948703218}a^{2}-\frac{65\cdots 41}{79589625744}a-\frac{32\cdots 61}{79589625744}$
|
| |
| Regulator: | \( 4019246.521670347 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 4019246.521670347 \cdot 75}{2\cdot\sqrt{24570065271803314195279}}\cr\approx \mathstrut & 9.41612248118278 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times A_5$ (as 10T11):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $A_5\times C_2$ |
| Character table for $A_5\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 5.1.17635574401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.4.311013484453206508801.1, deg 12 |
| Degree 20 siblings: | deg 20, deg 20 |
| Degree 24 sibling: | deg 24 |
| Degree 30 siblings: | deg 30, deg 30 |
| Degree 40 sibling: | deg 40 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{4}$ | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }^{2}$ | ${\href{/padicField/7.10.0.1}{10} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.5.0.1}{5} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/43.2.0.1}{2} }^{5}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
|
\(79\)
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *120 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *120 | 1.79.2t1.a.a | $1$ | $ 79 $ | \(\Q(\sqrt{-79}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 3.10491121.12t33.a.a | $3$ | $ 41^{2} \cdot 79^{2}$ | 5.1.17635574401.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
| 3.10491121.12t33.a.b | $3$ | $ 41^{2} \cdot 79^{2}$ | 5.1.17635574401.1 | $A_5$ (as 5T4) | $1$ | $-1$ | |
| 3.132799.12t76.a.a | $3$ | $ 41^{2} \cdot 79 $ | 10.0.24570065271803314195279.4 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ | |
| 3.132799.12t76.a.b | $3$ | $ 41^{2} \cdot 79 $ | 10.0.24570065271803314195279.4 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ | |
| *120 | 4.17635574401.5t4.a.a | $4$ | $ 41^{4} \cdot 79^{2}$ | 5.1.17635574401.1 | $A_5$ (as 5T4) | $1$ | $0$ |
| *120 | 4.17635574401.10t11.a.a | $4$ | $ 41^{4} \cdot 79^{2}$ | 10.0.24570065271803314195279.4 | $A_5\times C_2$ (as 10T11) | $1$ | $0$ |
| 5.17635574401.6t12.a.a | $5$ | $ 41^{4} \cdot 79^{2}$ | 5.1.17635574401.1 | $A_5$ (as 5T4) | $1$ | $1$ | |
| 5.139...679.12t75.a.a | $5$ | $ 41^{4} \cdot 79^{3}$ | 10.0.24570065271803314195279.4 | $A_5\times C_2$ (as 10T11) | $1$ | $-1$ |