Properties

Label 10.0.245...279.4
Degree $10$
Signature $[0, 5]$
Discriminant $-2.457\times 10^{22}$
Root discriminant \(173.40\)
Ramified primes $41,79$
Class number $75$ (GRH)
Class group [5, 15] (GRH)
Galois group $A_5\times C_2$ (as 10T11)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^10 - 4*x^9 + 40*x^8 + 94*x^7 + 8*x^6 + 3040*x^5 + 7009*x^4 + 2840*x^3 + 139835*x^2 + 266270*x + 134563)
 
Copy content gp:K = bnfinit(y^10 - 4*y^9 + 40*y^8 + 94*y^7 + 8*y^6 + 3040*y^5 + 7009*y^4 + 2840*y^3 + 139835*y^2 + 266270*y + 134563, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 4*x^9 + 40*x^8 + 94*x^7 + 8*x^6 + 3040*x^5 + 7009*x^4 + 2840*x^3 + 139835*x^2 + 266270*x + 134563);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 - 4*x^9 + 40*x^8 + 94*x^7 + 8*x^6 + 3040*x^5 + 7009*x^4 + 2840*x^3 + 139835*x^2 + 266270*x + 134563)
 

\( x^{10} - 4 x^{9} + 40 x^{8} + 94 x^{7} + 8 x^{6} + 3040 x^{5} + 7009 x^{4} + 2840 x^{3} + 139835 x^{2} + \cdots + 134563 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $10$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 5]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-24570065271803314195279\) \(\medspace = -\,41^{8}\cdot 79^{5}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(173.40\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $41^{4/5}79^{1/2}\approx 173.3966213773553$
Ramified primes:   \(41\), \(79\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-79}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-79}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{82}a^{5}-\frac{1}{41}a^{4}+\frac{9}{41}a^{3}+\frac{1}{82}a^{2}-\frac{33}{82}a+\frac{1}{82}$, $\frac{1}{82}a^{6}+\frac{7}{41}a^{4}+\frac{37}{82}a^{3}-\frac{31}{82}a^{2}+\frac{17}{82}a+\frac{1}{41}$, $\frac{1}{82}a^{7}-\frac{17}{82}a^{4}-\frac{37}{82}a^{3}+\frac{3}{82}a^{2}-\frac{14}{41}a-\frac{7}{41}$, $\frac{1}{328}a^{8}-\frac{1}{164}a^{7}-\frac{1}{328}a^{6}-\frac{1}{164}a^{5}-\frac{47}{328}a^{4}-\frac{25}{82}a^{3}+\frac{3}{82}a^{2}-\frac{15}{82}a-\frac{1}{8}$, $\frac{1}{318358502976}a^{9}-\frac{305324813}{318358502976}a^{8}+\frac{291305407}{106119500992}a^{7}+\frac{1354581241}{318358502976}a^{6}-\frac{1449858041}{318358502976}a^{5}-\frac{7682861}{2588280512}a^{4}+\frac{8760330491}{39794812872}a^{3}+\frac{2875832999}{9948703218}a^{2}-\frac{570077381}{318358502976}a-\frac{5261616917}{318358502976}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{5}\times C_{15}$, which has order $75$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{5}\times C_{15}$, which has order $75$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $4$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{141073098859}{26529875248}a^{9}-\frac{727947477875}{26529875248}a^{8}+\frac{6564274143463}{26529875248}a^{7}+\frac{6000313881967}{26529875248}a^{6}-\frac{3478887151803}{26529875248}a^{5}+\frac{459614868899687}{26529875248}a^{4}+\frac{35220276660886}{1658117203}a^{3}+\frac{16993578834077}{3316234406}a^{2}+\frac{21\cdots 13}{26529875248}a+\frac{15\cdots 97}{26529875248}$, $\frac{5181023061}{13264937624}a^{9}+\frac{2945722221}{13264937624}a^{8}+\frac{120552605581}{13264937624}a^{7}+\frac{1128873972367}{13264937624}a^{6}+\frac{2810919525831}{13264937624}a^{5}+\frac{8627766427403}{13264937624}a^{4}+\frac{141979897297}{40441883}a^{3}+\frac{10548092133337}{1658117203}a^{2}+\frac{58751451619383}{13264937624}a+\frac{13152531729121}{13264937624}$, $\frac{3715587531}{26529875248}a^{9}+\frac{64073756185}{26529875248}a^{8}+\frac{218236061007}{26529875248}a^{7}+\frac{2838448640723}{26529875248}a^{6}+\frac{17900526261629}{26529875248}a^{5}+\frac{66037716058323}{26529875248}a^{4}+\frac{17407656460620}{1658117203}a^{3}+\frac{111437620175873}{3316234406}a^{2}+\frac{11\cdots 05}{26529875248}a+\frac{463806358477745}{26529875248}$, $\frac{105635537822989}{79589625744}a^{9}-\frac{809469862374473}{79589625744}a^{8}-\frac{159265154499973}{26529875248}a^{7}+\frac{927854405396797}{79589625744}a^{6}-\frac{65\cdots 73}{79589625744}a^{5}-\frac{24\cdots 85}{26529875248}a^{4}-\frac{802303710946981}{9948703218}a^{3}-\frac{43\cdots 93}{9948703218}a^{2}-\frac{65\cdots 41}{79589625744}a-\frac{32\cdots 61}{79589625744}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4019246.521670347 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 4019246.521670347 \cdot 75}{2\cdot\sqrt{24570065271803314195279}}\cr\approx \mathstrut & 9.41612248118278 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^10 - 4*x^9 + 40*x^8 + 94*x^7 + 8*x^6 + 3040*x^5 + 7009*x^4 + 2840*x^3 + 139835*x^2 + 266270*x + 134563) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^10 - 4*x^9 + 40*x^8 + 94*x^7 + 8*x^6 + 3040*x^5 + 7009*x^4 + 2840*x^3 + 139835*x^2 + 266270*x + 134563, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 4*x^9 + 40*x^8 + 94*x^7 + 8*x^6 + 3040*x^5 + 7009*x^4 + 2840*x^3 + 139835*x^2 + 266270*x + 134563); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 - 4*x^9 + 40*x^8 + 94*x^7 + 8*x^6 + 3040*x^5 + 7009*x^4 + 2840*x^3 + 139835*x^2 + 266270*x + 134563); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_5$ (as 10T11):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A non-solvable group of order 120
The 10 conjugacy class representatives for $A_5\times C_2$
Character table for $A_5\times C_2$

Intermediate fields

\(\Q(\sqrt{-79}) \), 5.1.17635574401.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: 12.4.311013484453206508801.1, deg 12
Degree 20 siblings: deg 20, deg 20
Degree 24 sibling: deg 24
Degree 30 siblings: deg 30, deg 30
Degree 40 sibling: deg 40
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{4}$ ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ ${\href{/padicField/5.5.0.1}{5} }^{2}$ ${\href{/padicField/7.10.0.1}{10} }$ ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ ${\href{/padicField/17.10.0.1}{10} }$ ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.5.0.1}{5} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ R ${\href{/padicField/43.2.0.1}{2} }^{5}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(41\) Copy content Toggle raw display 41.2.5.8a1.1$x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$$5$$2$$8$$C_{10}$$$[\ ]_{5}^{2}$$
\(79\) Copy content Toggle raw display 79.1.2.1a1.1$x^{2} + 79$$2$$1$$1$$C_2$$$[\ ]_{2}$$
79.1.2.1a1.1$x^{2} + 79$$2$$1$$1$$C_2$$$[\ ]_{2}$$
79.1.2.1a1.1$x^{2} + 79$$2$$1$$1$$C_2$$$[\ ]_{2}$$
79.1.2.1a1.1$x^{2} + 79$$2$$1$$1$$C_2$$$[\ ]_{2}$$
79.1.2.1a1.1$x^{2} + 79$$2$$1$$1$$C_2$$$[\ ]_{2}$$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
*120 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
*120 1.79.2t1.a.a$1$ $ 79 $ \(\Q(\sqrt{-79}) \) $C_2$ (as 2T1) $1$ $-1$
3.10491121.12t33.a.a$3$ $ 41^{2} \cdot 79^{2}$ 5.1.17635574401.1 $A_5$ (as 5T4) $1$ $-1$
3.10491121.12t33.a.b$3$ $ 41^{2} \cdot 79^{2}$ 5.1.17635574401.1 $A_5$ (as 5T4) $1$ $-1$
3.132799.12t76.a.a$3$ $ 41^{2} \cdot 79 $ 10.0.24570065271803314195279.4 $A_5\times C_2$ (as 10T11) $1$ $1$
3.132799.12t76.a.b$3$ $ 41^{2} \cdot 79 $ 10.0.24570065271803314195279.4 $A_5\times C_2$ (as 10T11) $1$ $1$
*120 4.17635574401.5t4.a.a$4$ $ 41^{4} \cdot 79^{2}$ 5.1.17635574401.1 $A_5$ (as 5T4) $1$ $0$
*120 4.17635574401.10t11.a.a$4$ $ 41^{4} \cdot 79^{2}$ 10.0.24570065271803314195279.4 $A_5\times C_2$ (as 10T11) $1$ $0$
5.17635574401.6t12.a.a$5$ $ 41^{4} \cdot 79^{2}$ 5.1.17635574401.1 $A_5$ (as 5T4) $1$ $1$
5.139...679.12t75.a.a$5$ $ 41^{4} \cdot 79^{3}$ 10.0.24570065271803314195279.4 $A_5\times C_2$ (as 10T11) $1$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)