Properties

Label 4.17635574401.5t4.a.a
Dimension $4$
Group $A_5$
Conductor $17635574401$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $A_5$
Conductor: \(17635574401\)\(\medspace = 41^{4} \cdot 79^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.17635574401.1
Galois orbit size: $1$
Smallest permutation container: $A_5$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $A_5$
Projective stem field: Galois closure of 5.1.17635574401.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} + 25x^{3} + 118x^{2} - 102x + 2223 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: \( x^{2} + 42x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 19 a + 6 + \left(18 a + 13\right)\cdot 43 + \left(29 a + 24\right)\cdot 43^{2} + \left(42 a + 4\right)\cdot 43^{3} + \left(6 a + 4\right)\cdot 43^{4} + \left(7 a + 7\right)\cdot 43^{5} +O(43^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 38 a + 27 + \left(6 a + 25\right)\cdot 43 + \left(40 a + 28\right)\cdot 43^{2} + \left(42 a + 27\right)\cdot 43^{3} + \left(3 a + 41\right)\cdot 43^{4} + \left(5 a + 33\right)\cdot 43^{5} +O(43^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 a + 22 + \left(36 a + 37\right)\cdot 43 + \left(2 a + 18\right)\cdot 43^{2} + 30\cdot 43^{3} + \left(39 a + 2\right)\cdot 43^{4} + \left(37 a + 35\right)\cdot 43^{5} +O(43^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 7 + 40\cdot 43 + 21\cdot 43^{2} + 5\cdot 43^{3} + 26\cdot 43^{4} + 2\cdot 43^{5} +O(43^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 24 a + 25 + \left(24 a + 12\right)\cdot 43 + \left(13 a + 35\right)\cdot 43^{2} + 17\cdot 43^{3} + \left(36 a + 11\right)\cdot 43^{4} + \left(35 a + 7\right)\cdot 43^{5} +O(43^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$12$$5$$(1,2,3,4,5)$$-1$
$12$$5$$(1,3,4,5,2)$$-1$