Basic invariants
| Dimension: | $5$ |
| Group: | $A_5$ |
| Conductor: | \(17635574401\)\(\medspace = 41^{4} \cdot 79^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 5.1.17635574401.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $\PSL(2,5)$ |
| Parity: | even |
| Determinant: | 1.1.1t1.a.a |
| Projective image: | $A_5$ |
| Projective stem field: | Galois closure of 5.1.17635574401.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{5} - x^{4} + 25x^{3} + 118x^{2} - 102x + 2223 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$:
\( x^{2} + 42x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 19 a + 6 + \left(18 a + 13\right)\cdot 43 + \left(29 a + 24\right)\cdot 43^{2} + \left(42 a + 4\right)\cdot 43^{3} + \left(6 a + 4\right)\cdot 43^{4} + \left(7 a + 7\right)\cdot 43^{5} +O(43^{6})\)
|
| $r_{ 2 }$ | $=$ |
\( 38 a + 27 + \left(6 a + 25\right)\cdot 43 + \left(40 a + 28\right)\cdot 43^{2} + \left(42 a + 27\right)\cdot 43^{3} + \left(3 a + 41\right)\cdot 43^{4} + \left(5 a + 33\right)\cdot 43^{5} +O(43^{6})\)
|
| $r_{ 3 }$ | $=$ |
\( 5 a + 22 + \left(36 a + 37\right)\cdot 43 + \left(2 a + 18\right)\cdot 43^{2} + 30\cdot 43^{3} + \left(39 a + 2\right)\cdot 43^{4} + \left(37 a + 35\right)\cdot 43^{5} +O(43^{6})\)
|
| $r_{ 4 }$ | $=$ |
\( 7 + 40\cdot 43 + 21\cdot 43^{2} + 5\cdot 43^{3} + 26\cdot 43^{4} + 2\cdot 43^{5} +O(43^{6})\)
|
| $r_{ 5 }$ | $=$ |
\( 24 a + 25 + \left(24 a + 12\right)\cdot 43 + \left(13 a + 35\right)\cdot 43^{2} + 17\cdot 43^{3} + \left(36 a + 11\right)\cdot 43^{4} + \left(35 a + 7\right)\cdot 43^{5} +O(43^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $5$ | |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ | ✓ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ | |
| $12$ | $5$ | $(1,2,3,4,5)$ | $0$ | |
| $12$ | $5$ | $(1,3,4,5,2)$ | $0$ |