Normalized defining polynomial
\( x^{12} - 4 x^{11} + 2 x^{10} + 13 x^{9} - 55 x^{8} + 5 x^{7} - 21 x^{6} - 8 x^{5} - 285 x^{4} + \cdots - 40 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(311013484453206508801\)
\(\medspace = 41^{8}\cdot 79^{4}\)
|
| |
| Root discriminant: | \(51.02\) |
| |
| Galois root discriminant: | $41^{4/5}79^{1/2}\approx 173.3966213773553$ | ||
| Ramified primes: |
\(41\), \(79\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{3}$, $\frac{1}{19551893516}a^{11}-\frac{1404110099}{9775946758}a^{10}+\frac{934082996}{4887973379}a^{9}-\frac{3363812447}{19551893516}a^{8}+\frac{3929541855}{19551893516}a^{7}-\frac{7520033081}{19551893516}a^{6}-\frac{4365281491}{19551893516}a^{5}+\frac{922742465}{9775946758}a^{4}+\frac{2992473711}{19551893516}a^{3}-\frac{1447986387}{19551893516}a^{2}-\frac{2015952581}{4887973379}a+\frac{79359731}{4887973379}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{194174991}{9775946758}a^{11}+\frac{351656354}{4887973379}a^{10}-\frac{75086241}{4887973379}a^{9}-\frac{1262594191}{4887973379}a^{8}+\frac{9875822203}{9775946758}a^{7}+\frac{2364598487}{9775946758}a^{6}+\frac{5738367969}{9775946758}a^{5}+\frac{3240144153}{4887973379}a^{4}+\frac{57111997377}{9775946758}a^{3}-\frac{83860294133}{9775946758}a^{2}+\frac{78741336923}{9775946758}a-\frac{13186400298}{4887973379}$, $\frac{3453034379}{19551893516}a^{11}+\frac{6066822963}{9775946758}a^{10}-\frac{136301636}{4887973379}a^{9}-\frac{46719175245}{19551893516}a^{8}+\frac{165951864421}{19551893516}a^{7}+\frac{73093303969}{19551893516}a^{6}+\frac{88927362803}{19551893516}a^{5}+\frac{10872361187}{4887973379}a^{4}+\frac{1028124568105}{19551893516}a^{3}-\frac{1383661223465}{19551893516}a^{2}+\frac{239262062980}{4887973379}a-\frac{67409939709}{4887973379}$, $\frac{11183844829}{19551893516}a^{11}-\frac{9834570747}{4887973379}a^{10}+\frac{1586886073}{9775946758}a^{9}+\frac{148020322543}{19551893516}a^{8}-\frac{544487282305}{19551893516}a^{7}-\frac{211337623745}{19551893516}a^{6}-\frac{322296021827}{19551893516}a^{5}-\frac{124701006037}{9775946758}a^{4}-\frac{3330933709031}{19551893516}a^{3}+\frac{4595732401751}{19551893516}a^{2}-\frac{1598933608293}{9775946758}a+\frac{202641775028}{4887973379}$, $\frac{220887431}{9775946758}a^{11}+\frac{1666501779}{9775946758}a^{10}-\frac{1518837500}{4887973379}a^{9}-\frac{3429471597}{9775946758}a^{8}+\frac{23009189723}{9775946758}a^{7}-\frac{36043939519}{9775946758}a^{6}-\frac{20640406621}{9775946758}a^{5}-\frac{8597922809}{4887973379}a^{4}+\frac{30912208286}{4887973379}a^{3}-\frac{345319442653}{9775946758}a^{2}+\frac{202044795344}{4887973379}a-\frac{62054457179}{4887973379}$, $\frac{5035770897}{19551893516}a^{11}+\frac{8997095259}{9775946758}a^{10}-\frac{598121810}{4887973379}a^{9}-\frac{66525546155}{19551893516}a^{8}+\frac{248801189989}{19551893516}a^{7}+\frac{80941041757}{19551893516}a^{6}+\frac{139851304987}{19551893516}a^{5}+\frac{49880634801}{9775946758}a^{4}+\frac{1480380730673}{19551893516}a^{3}-\frac{2170423870585}{19551893516}a^{2}+\frac{770474292745}{9775946758}a-\frac{117438007112}{4887973379}$, $\frac{113768049303}{19551893516}a^{11}+\frac{202894738407}{9775946758}a^{10}-\frac{25891601509}{9775946758}a^{9}-\frac{1501321787375}{19551893516}a^{8}+\frac{5607092854829}{19551893516}a^{7}+\frac{1859462424365}{19551893516}a^{6}+\frac{3194750644267}{19551893516}a^{5}+\frac{573803428869}{4887973379}a^{4}+\frac{33415828618437}{19551893516}a^{3}-\frac{48900299479511}{19551893516}a^{2}+\frac{17284313449639}{9775946758}a-\frac{2625138097608}{4887973379}$, $\frac{68660480683}{19551893516}a^{11}+\frac{59713834536}{4887973379}a^{10}-\frac{7139244587}{9775946758}a^{9}-\frac{893004948777}{19551893516}a^{8}+\frac{3302593119275}{19551893516}a^{7}+\frac{1362873495563}{19551893516}a^{6}+\frac{2253940122273}{19551893516}a^{5}+\frac{800973007899}{9775946758}a^{4}+\frac{20556754084989}{19551893516}a^{3}-\frac{27473128202653}{19551893516}a^{2}+\frac{9635160536455}{9775946758}a-\frac{1322966881654}{4887973379}$
|
| |
| Regulator: | \( 646762.8045308752 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 646762.8045308752 \cdot 1}{2\cdot\sqrt{311013484453206508801}}\cr\approx \mathstrut & 0.457261763090004 \end{aligned}\]
Galois group
$C_2\times A_5$ (as 12T76):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $C_2\times A_5$ |
| Character table for $C_2\times A_5$ |
Intermediate fields
| 6.2.17635574401.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
| Minimal sibling: | 10.0.24570065271803314195279.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{4}$ | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(41\)
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ | |
|
\(79\)
| $\Q_{79}$ | $x + 76$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{79}$ | $x + 76$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{79}$ | $x + 76$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{79}$ | $x + 76$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.1 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |