Properties

Label 41.2.5.8a1.1
Base \(\Q_{41}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(8\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 38 x + 6 )^{5} + 41 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{41}$
Degree $d$: $10$
Ramification index $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{41}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{41})$ $=$$\Gal(K/\Q_{41})$: $C_{10}$
This field is Galois and abelian over $\Q_{41}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$1680 = (41^{ 2 } - 1)$

Intermediate fields

$\Q_{41}(\sqrt{3})$, 41.1.5.4a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{41}(\sqrt{3})$ $\cong \Q_{41}(t)$ where $t$ is a root of \( x^{2} + 38 x + 6 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 41 t \) $\ \in\Q_{41}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 5 z^3 + 10 z^2 + 10 z + 5$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $10$
Galois group: $C_{10}$ (as 10T1)
Inertia group: Intransitive group isomorphic to $C_5$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $5$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8$
Galois splitting model:not computed