Show commands:
Magma
magma: G := TransitiveGroup(10, 1);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_{10}$ | ||
CHM label: | $C(10)=5[x]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $1$ | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $10$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8,9,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $C_5$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 10 $ | $1$ | $10$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ |
$ 5, 5 $ | $1$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
$ 10 $ | $1$ | $10$ | $( 1, 4, 7,10, 3, 6, 9, 2, 5, 8)$ |
$ 5, 5 $ | $1$ | $5$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$ |
$ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
$ 5, 5 $ | $1$ | $5$ | $( 1, 7, 3, 9, 5)( 2, 8, 4,10, 6)$ |
$ 10 $ | $1$ | $10$ | $( 1, 8, 5, 2, 9, 6, 3,10, 7, 4)$ |
$ 5, 5 $ | $1$ | $5$ | $( 1, 9, 7, 5, 3)( 2,10, 8, 6, 4)$ |
$ 10 $ | $1$ | $10$ | $( 1,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $10=2 \cdot 5$ | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 10.2 | magma: IdentifyGroup(G);
|
Character table: |
2 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1a 10a 5a 10b 5b 2a 5c 10c 5d 10d X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 -1 1 -1 1 -1 X.3 1 A B /B /A 1 A B /B /A X.4 1 -A B -/B /A -1 A -B /B -/A X.5 1 B /A A /B 1 B /A A /B X.6 1 -B /A -A /B -1 B -/A A -/B X.7 1 /B A /A B 1 /B A /A B X.8 1 -/B A -/A B -1 /B -A /A -B X.9 1 /A /B B A 1 /A /B B A X.10 1 -/A /B -B A -1 /A -/B B -A A = E(5)^3 B = E(5) |
magma: CharacterTable(G);