Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_{10}$ | |
| CHM label : | $C(10)=5[x]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $1$ | |
| Generators: | (1,2,3,4,5,6,7,8,9,10) | |
| $|\Aut(F/K)|$: | $10$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 5: $C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $C_5$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 10 $ | $1$ | $10$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ |
| $ 5, 5 $ | $1$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
| $ 10 $ | $1$ | $10$ | $( 1, 4, 7,10, 3, 6, 9, 2, 5, 8)$ |
| $ 5, 5 $ | $1$ | $5$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$ |
| $ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| $ 5, 5 $ | $1$ | $5$ | $( 1, 7, 3, 9, 5)( 2, 8, 4,10, 6)$ |
| $ 10 $ | $1$ | $10$ | $( 1, 8, 5, 2, 9, 6, 3,10, 7, 4)$ |
| $ 5, 5 $ | $1$ | $5$ | $( 1, 9, 7, 5, 3)( 2,10, 8, 6, 4)$ |
| $ 10 $ | $1$ | $10$ | $( 1,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Group invariants
| Order: | $10=2 \cdot 5$ | |
| Cyclic: | Yes | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [10, 2] |
| Character table: |
2 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
1a 10a 5a 10b 5b 2a 5c 10c 5d 10d
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1
X.3 1 A B /B /A 1 A B /B /A
X.4 1 -A B -/B /A -1 A -B /B -/A
X.5 1 B /A A /B 1 B /A A /B
X.6 1 -B /A -A /B -1 B -/A A -/B
X.7 1 /B A /A B 1 /B A /A B
X.8 1 -/B A -/A B -1 /B -A /A -B
X.9 1 /A /B B A 1 /A /B B A
X.10 1 -/A /B -B A -1 /A -/B B -A
A = E(5)^3
B = E(5)
|