Properties

Label 10T11
10T11 1 3 1->3 6 1->6 2 4 2->4 2->4 7 2->7 5 3->5 8 3->8 4->6 9 4->9 10 4->10 5->7 5->7 5->10 6->8 7->9 7->9 8->10 9->1 9->5 10->2 10->2
Degree $10$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $A_5\times C_2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(10, 11);
 

Group invariants

Abstract group:  $A_5\times C_2$
Copy content magma:IdentifyGroup(G);
 
Order:  $120=2^{3} \cdot 3 \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $10$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $11$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $A(5)[x]2$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(2,4,10)(5,7,9)$, $(1,6)(2,7)(3,8)(4,9)(5,10)$, $(1,3,5,7,9)(2,4,6,8,10)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$60$:  $A_5$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 5: $A_5$

Low degree siblings

12T75, 12T76, 20T31, 20T36, 24T203, 30T29, 30T30, 40T61

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{10}$ $1$ $1$ $0$ $()$
2A $2^{5}$ $1$ $2$ $5$ $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$
2B $2^{5}$ $15$ $2$ $5$ $( 1, 6)( 2, 9)( 3,10)( 4, 7)( 5, 8)$
2C $2^{4},1^{2}$ $15$ $2$ $4$ $(1,7)(2,6)(3,9)(4,8)$
3A $3^{2},1^{4}$ $20$ $3$ $4$ $( 2,10, 4)( 5, 9, 7)$
5A1 $5^{2}$ $12$ $5$ $8$ $( 1, 7, 3, 5, 9)( 2, 8,10, 4, 6)$
5A2 $5^{2}$ $12$ $5$ $8$ $( 1, 3, 9, 7, 5)( 2,10, 6, 8, 4)$
6A $6,2^{2}$ $20$ $6$ $7$ $( 1, 6)( 2, 9,10, 7, 4, 5)( 3, 8)$
10A1 $10$ $12$ $10$ $9$ $( 1,10, 7, 4, 3, 6, 5, 2, 9, 8)$
10A3 $10$ $12$ $10$ $9$ $( 1, 4, 5, 8, 7, 6, 9,10, 3, 2)$

Malle's constant $a(G)$:     $1/4$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 5A1 5A2 6A 10A1 10A3
Size 1 1 15 15 20 12 12 20 12 12
2 P 1A 1A 1A 1A 3A 5A2 5A1 3A 5A1 5A2
3 P 1A 2A 2B 2C 1A 5A2 5A1 2A 10A3 10A1
5 P 1A 2A 2B 2C 3A 1A 1A 6A 2A 2A
Type
120.35.1a R 1 1 1 1 1 1 1 1 1 1
120.35.1b R 1 1 1 1 1 1 1 1 1 1
120.35.3a1 R 3 3 1 1 0 ζ51ζ5 ζ52ζ52 0 ζ52ζ52 ζ51ζ5
120.35.3a2 R 3 3 1 1 0 ζ52ζ52 ζ51ζ5 0 ζ51ζ5 ζ52ζ52
120.35.3b1 R 3 3 1 1 0 ζ51ζ5 ζ52ζ52 0 ζ52+ζ52 ζ51+ζ5
120.35.3b2 R 3 3 1 1 0 ζ52ζ52 ζ51ζ5 0 ζ51+ζ5 ζ52+ζ52
120.35.4a R 4 4 0 0 1 1 1 1 1 1
120.35.4b R 4 4 0 0 1 1 1 1 1 1
120.35.5a R 5 5 1 1 1 0 0 1 0 0
120.35.5b R 5 5 1 1 1 0 0 1 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $108 x^{10} + \left(125 t^{2} - 25\right) x^{4} + \left(-50 t^{2} + 10\right) x^{2} + \left(5 t^{2} - 1\right)$ Copy content Toggle raw display