Show commands: Magma
Group invariants
| Abstract group: | $A_5\times C_2$ |
| |
| Order: | $120=2^{3} \cdot 3 \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $10$ |
| |
| Transitive number $t$: | $11$ |
| |
| CHM label: | $A(5)[x]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(2,4,10)(5,7,9)$, $(1,6)(2,7)(3,8)(4,9)(5,10)$, $(1,3,5,7,9)(2,4,6,8,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $60$: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $A_5$
Low degree siblings
12T75, 12T76, 20T31, 20T36, 24T203, 30T29, 30T30, 40T61Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{5}$ | $1$ | $2$ | $5$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| 2B | $2^{5}$ | $15$ | $2$ | $5$ | $( 1, 6)( 2, 9)( 3,10)( 4, 7)( 5, 8)$ |
| 2C | $2^{4},1^{2}$ | $15$ | $2$ | $4$ | $(1,7)(2,6)(3,9)(4,8)$ |
| 3A | $3^{2},1^{4}$ | $20$ | $3$ | $4$ | $( 2,10, 4)( 5, 9, 7)$ |
| 5A1 | $5^{2}$ | $12$ | $5$ | $8$ | $( 1, 7, 3, 5, 9)( 2, 8,10, 4, 6)$ |
| 5A2 | $5^{2}$ | $12$ | $5$ | $8$ | $( 1, 3, 9, 7, 5)( 2,10, 6, 8, 4)$ |
| 6A | $6,2^{2}$ | $20$ | $6$ | $7$ | $( 1, 6)( 2, 9,10, 7, 4, 5)( 3, 8)$ |
| 10A1 | $10$ | $12$ | $10$ | $9$ | $( 1,10, 7, 4, 3, 6, 5, 2, 9, 8)$ |
| 10A3 | $10$ | $12$ | $10$ | $9$ | $( 1, 4, 5, 8, 7, 6, 9,10, 3, 2)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 10A1 | 10A3 | ||
| Size | 1 | 1 | 15 | 15 | 20 | 12 | 12 | 20 | 12 | 12 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 3A | 5A1 | 5A2 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 2A | 10A3 | 10A1 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 6A | 2A | 2A | |
| Type | |||||||||||
| 120.35.1a | R | ||||||||||
| 120.35.1b | R | ||||||||||
| 120.35.3a1 | R | ||||||||||
| 120.35.3a2 | R | ||||||||||
| 120.35.3b1 | R | ||||||||||
| 120.35.3b2 | R | ||||||||||
| 120.35.4a | R | ||||||||||
| 120.35.4b | R | ||||||||||
| 120.35.5a | R | ||||||||||
| 120.35.5b | R |
Regular extensions
| $f_{ 1 } =$ |
$108 x^{10} + \left(125 t^{2} - 25\right) x^{4} + \left(-50 t^{2} + 10\right) x^{2} + \left(5 t^{2} - 1\right)$
|