Properties

Label 961.2.g.n.844.1
Level $961$
Weight $2$
Character 961.844
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,6,-3,-11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 844.1
Root \(-2.52368i\) of defining polynomial
Character \(\chi\) \(=\) 961.844
Dual form 961.2.g.n.846.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.108599 + 0.334232i) q^{2} +(-2.83007 + 0.601549i) q^{3} +(1.51812 - 1.10298i) q^{4} +(-1.48661 + 2.57489i) q^{5} +(-0.508398 - 0.880572i) q^{6} +(-0.988571 - 0.440140i) q^{7} +(1.10215 + 0.800755i) q^{8} +(4.90678 - 2.18464i) q^{9} +(-1.02206 - 0.217245i) q^{10} +(-0.254147 - 2.41805i) q^{11} +(-3.63288 + 4.03472i) q^{12} +(-1.92285 - 2.13554i) q^{13} +(0.0397516 - 0.378211i) q^{14} +(2.65829 - 8.18139i) q^{15} +(1.01179 - 3.11397i) q^{16} +(-0.190740 + 1.81477i) q^{17} +(1.26305 + 1.40275i) q^{18} +(1.41740 - 1.57418i) q^{19} +(0.583191 + 5.54869i) q^{20} +(3.06249 + 0.650952i) q^{21} +(0.780590 - 0.347541i) q^{22} +(-0.357760 - 0.259928i) q^{23} +(-3.60084 - 1.60320i) q^{24} +(-1.92005 - 3.32562i) q^{25} +(0.504947 - 0.874594i) q^{26} +(-5.55018 + 4.03244i) q^{27} +(-1.98623 + 0.422186i) q^{28} +(0.976227 + 3.00452i) q^{29} +3.02317 q^{30} +3.87532 q^{32} +(2.17383 + 6.69036i) q^{33} +(-0.627268 + 0.133330i) q^{34} +(2.60294 - 1.89115i) q^{35} +(5.03946 - 8.72860i) q^{36} +(1.57338 + 2.72517i) q^{37} +(0.680071 + 0.302787i) q^{38} +(6.72642 + 4.88703i) q^{39} +(-3.70032 + 1.64749i) q^{40} +(6.79444 + 1.44420i) q^{41} +(0.115013 + 1.09427i) q^{42} +(5.62898 - 6.25162i) q^{43} +(-3.05288 - 3.39056i) q^{44} +(-1.66928 + 15.8821i) q^{45} +(0.0480240 - 0.147803i) q^{46} +(-2.46041 + 7.57236i) q^{47} +(-0.990228 + 9.42139i) q^{48} +(-3.90036 - 4.33179i) q^{49} +(0.903015 - 1.00290i) q^{50} +(-0.551866 - 5.25066i) q^{51} +(-5.27456 - 1.12114i) q^{52} +(4.54671 - 2.02433i) q^{53} +(-1.95051 - 1.41713i) q^{54} +(6.60404 + 2.94031i) q^{55} +(-0.737104 - 1.27670i) q^{56} +(-3.06439 + 5.30768i) q^{57} +(-0.898189 + 0.652573i) q^{58} +(11.7514 - 2.49784i) q^{59} +(-4.98828 - 15.3523i) q^{60} +14.4351 q^{61} -5.81225 q^{63} +(-1.60273 - 4.93269i) q^{64} +(8.35732 - 1.77640i) q^{65} +(-2.00006 + 1.45313i) q^{66} +(3.21879 - 5.57511i) q^{67} +(1.71208 + 2.96541i) q^{68} +(1.16884 + 0.520403i) q^{69} +(0.914757 + 0.664610i) q^{70} +(1.53281 - 0.682453i) q^{71} +(7.15734 + 1.52134i) q^{72} +(1.50105 + 14.2815i) q^{73} +(-0.739972 + 0.821822i) q^{74} +(7.43439 + 8.25672i) q^{75} +(0.415493 - 3.95316i) q^{76} +(-0.813039 + 2.50228i) q^{77} +(-0.902923 + 2.77891i) q^{78} +(-0.360377 + 3.42876i) q^{79} +(6.51400 + 7.23453i) q^{80} +(2.49968 - 2.77618i) q^{81} +(0.255168 + 2.42776i) q^{82} +(12.5727 + 2.67242i) q^{83} +(5.36720 - 2.38963i) q^{84} +(-4.38928 - 3.18900i) q^{85} +(2.70079 + 1.20247i) q^{86} +(-4.57015 - 7.91573i) q^{87} +(1.65616 - 2.86855i) q^{88} +(1.82788 - 1.32803i) q^{89} +(-5.48961 + 1.16685i) q^{90} +(0.960936 + 2.95746i) q^{91} -0.829816 q^{92} -2.79812 q^{94} +(1.94622 + 5.98986i) q^{95} +(-10.9674 + 2.33120i) q^{96} +(-2.76106 + 2.00603i) q^{97} +(1.02425 - 1.77405i) q^{98} +(-6.52961 - 11.3096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 6 q^{4} - 3 q^{5} - 11 q^{6} + 12 q^{7} - 8 q^{8} + 5 q^{9} - 12 q^{10} + 2 q^{11} - 25 q^{12} - 18 q^{13} + 24 q^{14} - 4 q^{15} - 2 q^{16} + q^{17} - 8 q^{18} + 11 q^{19} - 18 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{14}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.108599 + 0.334232i 0.0767908 + 0.236338i 0.982082 0.188453i \(-0.0603475\pi\)
−0.905291 + 0.424791i \(0.860347\pi\)
\(3\) −2.83007 + 0.601549i −1.63394 + 0.347305i −0.931303 0.364245i \(-0.881327\pi\)
−0.702636 + 0.711549i \(0.747994\pi\)
\(4\) 1.51812 1.10298i 0.759058 0.551488i
\(5\) −1.48661 + 2.57489i −0.664834 + 1.15153i 0.314496 + 0.949259i \(0.398165\pi\)
−0.979330 + 0.202268i \(0.935169\pi\)
\(6\) −0.508398 0.880572i −0.207553 0.359492i
\(7\) −0.988571 0.440140i −0.373645 0.166357i 0.211318 0.977417i \(-0.432224\pi\)
−0.584963 + 0.811060i \(0.698891\pi\)
\(8\) 1.10215 + 0.800755i 0.389667 + 0.283110i
\(9\) 4.90678 2.18464i 1.63559 0.728213i
\(10\) −1.02206 0.217245i −0.323203 0.0686988i
\(11\) −0.254147 2.41805i −0.0766283 0.729070i −0.963618 0.267282i \(-0.913875\pi\)
0.886990 0.461788i \(-0.152792\pi\)
\(12\) −3.63288 + 4.03472i −1.04872 + 1.16472i
\(13\) −1.92285 2.13554i −0.533302 0.592292i 0.414937 0.909850i \(-0.363804\pi\)
−0.948239 + 0.317558i \(0.897137\pi\)
\(14\) 0.0397516 0.378211i 0.0106241 0.101081i
\(15\) 2.65829 8.18139i 0.686369 2.11243i
\(16\) 1.01179 3.11397i 0.252948 0.778493i
\(17\) −0.190740 + 1.81477i −0.0462612 + 0.440146i 0.946736 + 0.322010i \(0.104359\pi\)
−0.992997 + 0.118136i \(0.962308\pi\)
\(18\) 1.26305 + 1.40275i 0.297703 + 0.330632i
\(19\) 1.41740 1.57418i 0.325174 0.361143i −0.558286 0.829648i \(-0.688541\pi\)
0.883460 + 0.468506i \(0.155208\pi\)
\(20\) 0.583191 + 5.54869i 0.130405 + 1.24072i
\(21\) 3.06249 + 0.650952i 0.668290 + 0.142049i
\(22\) 0.780590 0.347541i 0.166422 0.0740960i
\(23\) −0.357760 0.259928i −0.0745981 0.0541987i 0.549861 0.835256i \(-0.314681\pi\)
−0.624459 + 0.781057i \(0.714681\pi\)
\(24\) −3.60084 1.60320i −0.735018 0.327251i
\(25\) −1.92005 3.32562i −0.384010 0.665124i
\(26\) 0.504947 0.874594i 0.0990283 0.171522i
\(27\) −5.55018 + 4.03244i −1.06813 + 0.776043i
\(28\) −1.98623 + 0.422186i −0.375362 + 0.0797857i
\(29\) 0.976227 + 3.00452i 0.181281 + 0.557925i 0.999864 0.0164625i \(-0.00524041\pi\)
−0.818584 + 0.574387i \(0.805240\pi\)
\(30\) 3.02317 0.551953
\(31\) 0 0
\(32\) 3.87532 0.685067
\(33\) 2.17383 + 6.69036i 0.378415 + 1.16464i
\(34\) −0.627268 + 0.133330i −0.107576 + 0.0228659i
\(35\) 2.60294 1.89115i 0.439977 0.319662i
\(36\) 5.03946 8.72860i 0.839910 1.45477i
\(37\) 1.57338 + 2.72517i 0.258661 + 0.448015i 0.965884 0.258977i \(-0.0833853\pi\)
−0.707222 + 0.706991i \(0.750052\pi\)
\(38\) 0.680071 + 0.302787i 0.110322 + 0.0491185i
\(39\) 6.72642 + 4.88703i 1.07709 + 0.782551i
\(40\) −3.70032 + 1.64749i −0.585073 + 0.260491i
\(41\) 6.79444 + 1.44420i 1.06111 + 0.225547i 0.705227 0.708982i \(-0.250845\pi\)
0.355887 + 0.934529i \(0.384179\pi\)
\(42\) 0.115013 + 1.09427i 0.0177469 + 0.168850i
\(43\) 5.62898 6.25162i 0.858411 0.953362i −0.140916 0.990022i \(-0.545005\pi\)
0.999328 + 0.0366590i \(0.0116715\pi\)
\(44\) −3.05288 3.39056i −0.460239 0.511147i
\(45\) −1.66928 + 15.8821i −0.248842 + 2.36757i
\(46\) 0.0480240 0.147803i 0.00708075 0.0217923i
\(47\) −2.46041 + 7.57236i −0.358888 + 1.10454i 0.594833 + 0.803849i \(0.297218\pi\)
−0.953721 + 0.300693i \(0.902782\pi\)
\(48\) −0.990228 + 9.42139i −0.142927 + 1.35986i
\(49\) −3.90036 4.33179i −0.557195 0.618828i
\(50\) 0.903015 1.00290i 0.127706 0.141831i
\(51\) −0.551866 5.25066i −0.0772767 0.735239i
\(52\) −5.27456 1.12114i −0.731450 0.155474i
\(53\) 4.54671 2.02433i 0.624539 0.278063i −0.0699672 0.997549i \(-0.522289\pi\)
0.694506 + 0.719487i \(0.255623\pi\)
\(54\) −1.95051 1.41713i −0.265431 0.192847i
\(55\) 6.60404 + 2.94031i 0.890489 + 0.396471i
\(56\) −0.737104 1.27670i −0.0984997 0.170606i
\(57\) −3.06439 + 5.30768i −0.405889 + 0.703020i
\(58\) −0.898189 + 0.652573i −0.117938 + 0.0856870i
\(59\) 11.7514 2.49784i 1.52990 0.325191i 0.635375 0.772204i \(-0.280846\pi\)
0.894527 + 0.447013i \(0.147512\pi\)
\(60\) −4.98828 15.3523i −0.643984 1.98198i
\(61\) 14.4351 1.84823 0.924115 0.382115i \(-0.124804\pi\)
0.924115 + 0.382115i \(0.124804\pi\)
\(62\) 0 0
\(63\) −5.81225 −0.732274
\(64\) −1.60273 4.93269i −0.200341 0.616586i
\(65\) 8.35732 1.77640i 1.03660 0.220336i
\(66\) −2.00006 + 1.45313i −0.246190 + 0.178868i
\(67\) 3.21879 5.57511i 0.393238 0.681108i −0.599636 0.800273i \(-0.704688\pi\)
0.992875 + 0.119164i \(0.0380215\pi\)
\(68\) 1.71208 + 2.96541i 0.207620 + 0.359609i
\(69\) 1.16884 + 0.520403i 0.140712 + 0.0626491i
\(70\) 0.914757 + 0.664610i 0.109334 + 0.0794361i
\(71\) 1.53281 0.682453i 0.181912 0.0809923i −0.313760 0.949502i \(-0.601589\pi\)
0.495671 + 0.868510i \(0.334922\pi\)
\(72\) 7.15734 + 1.52134i 0.843501 + 0.179292i
\(73\) 1.50105 + 14.2815i 0.175684 + 1.67152i 0.626894 + 0.779105i \(0.284326\pi\)
−0.451209 + 0.892418i \(0.649007\pi\)
\(74\) −0.739972 + 0.821822i −0.0860200 + 0.0955349i
\(75\) 7.43439 + 8.25672i 0.858449 + 0.953404i
\(76\) 0.415493 3.95316i 0.0476604 0.453458i
\(77\) −0.813039 + 2.50228i −0.0926544 + 0.285161i
\(78\) −0.902923 + 2.77891i −0.102236 + 0.314650i
\(79\) −0.360377 + 3.42876i −0.0405456 + 0.385765i 0.955366 + 0.295426i \(0.0954617\pi\)
−0.995911 + 0.0903390i \(0.971205\pi\)
\(80\) 6.51400 + 7.23453i 0.728288 + 0.808845i
\(81\) 2.49968 2.77618i 0.277742 0.308464i
\(82\) 0.255168 + 2.42776i 0.0281786 + 0.268101i
\(83\) 12.5727 + 2.67242i 1.38004 + 0.293336i 0.837381 0.546620i \(-0.184086\pi\)
0.542655 + 0.839955i \(0.317419\pi\)
\(84\) 5.36720 2.38963i 0.585609 0.260730i
\(85\) −4.38928 3.18900i −0.476084 0.345895i
\(86\) 2.70079 + 1.20247i 0.291234 + 0.129666i
\(87\) −4.57015 7.91573i −0.489972 0.848656i
\(88\) 1.65616 2.86855i 0.176547 0.305789i
\(89\) 1.82788 1.32803i 0.193755 0.140771i −0.486678 0.873581i \(-0.661792\pi\)
0.680433 + 0.732810i \(0.261792\pi\)
\(90\) −5.48961 + 1.16685i −0.578655 + 0.122997i
\(91\) 0.960936 + 2.95746i 0.100733 + 0.310026i
\(92\) −0.829816 −0.0865143
\(93\) 0 0
\(94\) −2.79812 −0.288604
\(95\) 1.94622 + 5.98986i 0.199678 + 0.614547i
\(96\) −10.9674 + 2.33120i −1.11936 + 0.237927i
\(97\) −2.76106 + 2.00603i −0.280343 + 0.203681i −0.719067 0.694941i \(-0.755431\pi\)
0.438724 + 0.898622i \(0.355431\pi\)
\(98\) 1.02425 1.77405i 0.103465 0.179207i
\(99\) −6.52961 11.3096i −0.656251 1.13666i
\(100\) −6.58294 2.93091i −0.658294 0.293091i
\(101\) −14.3336 10.4140i −1.42625 1.03623i −0.990700 0.136062i \(-0.956555\pi\)
−0.435546 0.900167i \(-0.643445\pi\)
\(102\) 1.69501 0.754665i 0.167831 0.0747230i
\(103\) −7.89741 1.67865i −0.778155 0.165402i −0.198322 0.980137i \(-0.563549\pi\)
−0.579834 + 0.814735i \(0.696882\pi\)
\(104\) −0.409213 3.89341i −0.0401267 0.381780i
\(105\) −6.22887 + 6.91786i −0.607876 + 0.675114i
\(106\) 1.17036 + 1.29982i 0.113676 + 0.126250i
\(107\) 1.27015 12.0846i 0.122790 1.16827i −0.743505 0.668731i \(-0.766838\pi\)
0.866294 0.499534i \(-0.166495\pi\)
\(108\) −3.97813 + 12.2434i −0.382796 + 1.17812i
\(109\) −0.195330 + 0.601165i −0.0187093 + 0.0575812i −0.959975 0.280085i \(-0.909637\pi\)
0.941266 + 0.337666i \(0.109637\pi\)
\(110\) −0.265556 + 2.52660i −0.0253198 + 0.240901i
\(111\) −6.09208 6.76594i −0.578235 0.642195i
\(112\) −2.37081 + 2.63305i −0.224021 + 0.248800i
\(113\) 1.18121 + 11.2384i 0.111119 + 1.05722i 0.897963 + 0.440071i \(0.145047\pi\)
−0.786844 + 0.617152i \(0.788286\pi\)
\(114\) −2.10679 0.447811i −0.197319 0.0419414i
\(115\) 1.20114 0.534781i 0.112007 0.0498686i
\(116\) 4.79594 + 3.48445i 0.445291 + 0.323523i
\(117\) −14.1004 6.27789i −1.30358 0.580391i
\(118\) 2.11104 + 3.65643i 0.194337 + 0.336602i
\(119\) 0.987313 1.71008i 0.0905068 0.156762i
\(120\) 9.48112 6.88844i 0.865504 0.628825i
\(121\) 4.97724 1.05795i 0.452477 0.0961769i
\(122\) 1.56764 + 4.82469i 0.141927 + 0.436806i
\(123\) −20.0975 −1.81213
\(124\) 0 0
\(125\) −3.44866 −0.308458
\(126\) −0.631202 1.94264i −0.0562319 0.173064i
\(127\) 0.115232 0.0244933i 0.0102252 0.00217343i −0.202796 0.979221i \(-0.565003\pi\)
0.213021 + 0.977048i \(0.431670\pi\)
\(128\) 7.74501 5.62708i 0.684569 0.497368i
\(129\) −12.1697 + 21.0786i −1.07149 + 1.85587i
\(130\) 1.50132 + 2.60037i 0.131675 + 0.228068i
\(131\) 5.28390 + 2.35255i 0.461657 + 0.205543i 0.624367 0.781131i \(-0.285357\pi\)
−0.162710 + 0.986674i \(0.552024\pi\)
\(132\) 10.6794 + 7.75907i 0.929526 + 0.675340i
\(133\) −2.09406 + 0.932337i −0.181578 + 0.0808439i
\(134\) 2.21294 + 0.470375i 0.191169 + 0.0406342i
\(135\) −2.13212 20.2858i −0.183504 1.74592i
\(136\) −1.66341 + 1.84740i −0.142636 + 0.158413i
\(137\) −7.89937 8.77314i −0.674889 0.749540i 0.304281 0.952582i \(-0.401584\pi\)
−0.979170 + 0.203042i \(0.934917\pi\)
\(138\) −0.0470005 + 0.447180i −0.00400095 + 0.0380665i
\(139\) 4.76566 14.6672i 0.404218 1.24406i −0.517328 0.855787i \(-0.673073\pi\)
0.921546 0.388268i \(-0.126927\pi\)
\(140\) 1.86568 5.74196i 0.157678 0.485284i
\(141\) 2.40797 22.9103i 0.202788 1.92940i
\(142\) 0.394559 + 0.438203i 0.0331107 + 0.0367731i
\(143\) −4.67516 + 5.19229i −0.390956 + 0.434201i
\(144\) −1.83827 17.4900i −0.153189 1.45750i
\(145\) −9.18758 1.95288i −0.762987 0.162178i
\(146\) −4.61032 + 2.05265i −0.381553 + 0.169878i
\(147\) 13.6441 + 9.91300i 1.12534 + 0.817611i
\(148\) 5.39436 + 2.40172i 0.443414 + 0.197421i
\(149\) 5.97511 + 10.3492i 0.489500 + 0.847840i 0.999927 0.0120817i \(-0.00384583\pi\)
−0.510427 + 0.859921i \(0.670512\pi\)
\(150\) −1.95230 + 3.38148i −0.159404 + 0.276097i
\(151\) −3.49668 + 2.54048i −0.284556 + 0.206742i −0.720902 0.693037i \(-0.756272\pi\)
0.436346 + 0.899779i \(0.356272\pi\)
\(152\) 2.82272 0.599987i 0.228953 0.0486654i
\(153\) 3.02870 + 9.32137i 0.244856 + 0.753588i
\(154\) −0.924636 −0.0745093
\(155\) 0 0
\(156\) 15.6018 1.24914
\(157\) −2.68982 8.27841i −0.214671 0.660689i −0.999177 0.0405678i \(-0.987083\pi\)
0.784506 0.620121i \(-0.212917\pi\)
\(158\) −1.18514 + 0.251909i −0.0942845 + 0.0200408i
\(159\) −11.6498 + 8.46405i −0.923887 + 0.671243i
\(160\) −5.76111 + 9.97854i −0.455456 + 0.788873i
\(161\) 0.239267 + 0.414422i 0.0188568 + 0.0326610i
\(162\) 1.19935 + 0.533985i 0.0942297 + 0.0419538i
\(163\) −2.53053 1.83853i −0.198206 0.144005i 0.484255 0.874927i \(-0.339091\pi\)
−0.682462 + 0.730922i \(0.739091\pi\)
\(164\) 11.9077 5.30164i 0.929834 0.413989i
\(165\) −20.4586 4.34861i −1.59270 0.338539i
\(166\) 0.472174 + 4.49243i 0.0366478 + 0.348680i
\(167\) 8.93619 9.92465i 0.691503 0.767992i −0.290496 0.956876i \(-0.593820\pi\)
0.981999 + 0.188884i \(0.0604870\pi\)
\(168\) 2.85405 + 3.16975i 0.220195 + 0.244551i
\(169\) 0.495687 4.71614i 0.0381298 0.362780i
\(170\) 0.589196 1.81336i 0.0451893 0.139078i
\(171\) 3.51585 10.8207i 0.268864 0.827478i
\(172\) 1.65006 15.6993i 0.125816 1.19706i
\(173\) 12.7434 + 14.1530i 0.968864 + 1.07603i 0.997075 + 0.0764306i \(0.0243524\pi\)
−0.0282108 + 0.999602i \(0.508981\pi\)
\(174\) 2.14938 2.38713i 0.162944 0.180968i
\(175\) 0.434365 + 4.13270i 0.0328349 + 0.312403i
\(176\) −7.78689 1.65515i −0.586959 0.124762i
\(177\) −31.7547 + 14.1381i −2.38683 + 1.06268i
\(178\) 0.642377 + 0.466714i 0.0481482 + 0.0349817i
\(179\) 0.0724715 + 0.0322664i 0.00541678 + 0.00241170i 0.409443 0.912336i \(-0.365723\pi\)
−0.404026 + 0.914747i \(0.632390\pi\)
\(180\) 14.9835 + 25.9521i 1.11680 + 1.93436i
\(181\) 1.08143 1.87308i 0.0803817 0.139225i −0.823032 0.567995i \(-0.807719\pi\)
0.903414 + 0.428769i \(0.141053\pi\)
\(182\) −0.884121 + 0.642351i −0.0655354 + 0.0476142i
\(183\) −40.8524 + 8.68344i −3.01990 + 0.641899i
\(184\) −0.186165 0.572956i −0.0137243 0.0422389i
\(185\) −9.35601 −0.687868
\(186\) 0 0
\(187\) 4.43668 0.324442
\(188\) 4.61695 + 14.2095i 0.336725 + 1.03633i
\(189\) 7.26158 1.54350i 0.528202 0.112273i
\(190\) −1.79065 + 1.30098i −0.129907 + 0.0943831i
\(191\) 2.67085 4.62604i 0.193256 0.334729i −0.753072 0.657939i \(-0.771429\pi\)
0.946327 + 0.323210i \(0.104762\pi\)
\(192\) 7.50308 + 12.9957i 0.541488 + 0.937885i
\(193\) −1.94921 0.867844i −0.140307 0.0624688i 0.335382 0.942082i \(-0.391135\pi\)
−0.475689 + 0.879613i \(0.657801\pi\)
\(194\) −0.970327 0.704984i −0.0696654 0.0506149i
\(195\) −22.5832 + 10.0547i −1.61722 + 0.720031i
\(196\) −10.6991 2.27416i −0.764220 0.162440i
\(197\) −0.614181 5.84354i −0.0437586 0.416335i −0.994371 0.105955i \(-0.966210\pi\)
0.950612 0.310381i \(-0.100456\pi\)
\(198\) 3.07093 3.41062i 0.218242 0.242382i
\(199\) −4.63571 5.14848i −0.328617 0.364966i 0.556083 0.831127i \(-0.312304\pi\)
−0.884700 + 0.466161i \(0.845637\pi\)
\(200\) 0.546837 5.20280i 0.0386672 0.367894i
\(201\) −5.75569 + 17.7142i −0.405975 + 1.24946i
\(202\) 1.92407 5.92169i 0.135377 0.416649i
\(203\) 0.357339 3.39985i 0.0250803 0.238623i
\(204\) −6.62915 7.36241i −0.464133 0.515472i
\(205\) −13.8194 + 15.3480i −0.965188 + 1.07195i
\(206\) −0.296590 2.82187i −0.0206644 0.196609i
\(207\) −2.32330 0.493832i −0.161480 0.0343237i
\(208\) −8.59553 + 3.82698i −0.595993 + 0.265353i
\(209\) −4.16669 3.02727i −0.288216 0.209401i
\(210\) −2.98862 1.33062i −0.206234 0.0918214i
\(211\) −8.35437 14.4702i −0.575139 0.996170i −0.996027 0.0890568i \(-0.971615\pi\)
0.420888 0.907113i \(-0.361719\pi\)
\(212\) 4.66966 8.08808i 0.320713 0.555492i
\(213\) −3.92744 + 2.85345i −0.269104 + 0.195515i
\(214\) 4.17701 0.887850i 0.285534 0.0606922i
\(215\) 7.72911 + 23.7878i 0.527121 + 1.62231i
\(216\) −9.34610 −0.635921
\(217\) 0 0
\(218\) −0.222141 −0.0150453
\(219\) −12.8391 39.5146i −0.867585 2.67015i
\(220\) 13.2688 2.82037i 0.894582 0.190149i
\(221\) 4.24227 3.08219i 0.285366 0.207331i
\(222\) 1.59980 2.77094i 0.107372 0.185973i
\(223\) −3.13078 5.42267i −0.209653 0.363129i 0.741952 0.670453i \(-0.233900\pi\)
−0.951605 + 0.307323i \(0.900567\pi\)
\(224\) −3.83103 1.70568i −0.255972 0.113966i
\(225\) −16.6865 12.1235i −1.11244 0.808232i
\(226\) −3.62797 + 1.61528i −0.241329 + 0.107447i
\(227\) 7.67603 + 1.63159i 0.509476 + 0.108292i 0.455475 0.890248i \(-0.349469\pi\)
0.0540006 + 0.998541i \(0.482803\pi\)
\(228\) 1.20214 + 11.4376i 0.0796139 + 0.757476i
\(229\) −8.54679 + 9.49218i −0.564788 + 0.627261i −0.956115 0.292991i \(-0.905349\pi\)
0.391327 + 0.920252i \(0.372016\pi\)
\(230\) 0.309183 + 0.343382i 0.0203869 + 0.0226420i
\(231\) 0.795712 7.57069i 0.0523540 0.498115i
\(232\) −1.32994 + 4.09313i −0.0873148 + 0.268727i
\(233\) 3.92992 12.0950i 0.257457 0.792372i −0.735878 0.677114i \(-0.763230\pi\)
0.993336 0.115258i \(-0.0367696\pi\)
\(234\) 0.566992 5.39457i 0.0370654 0.352654i
\(235\) −15.8403 17.5925i −1.03331 1.14761i
\(236\) 15.0849 16.7535i 0.981946 1.09056i
\(237\) −1.04268 9.92040i −0.0677291 0.644399i
\(238\) 0.678783 + 0.144280i 0.0439990 + 0.00935227i
\(239\) 23.2265 10.3411i 1.50240 0.668912i 0.519739 0.854325i \(-0.326029\pi\)
0.982661 + 0.185413i \(0.0593624\pi\)
\(240\) −22.7870 16.5557i −1.47089 1.06867i
\(241\) −2.15686 0.960297i −0.138936 0.0618582i 0.336091 0.941829i \(-0.390895\pi\)
−0.475027 + 0.879971i \(0.657562\pi\)
\(242\) 0.894121 + 1.54866i 0.0574763 + 0.0995519i
\(243\) 4.88634 8.46339i 0.313459 0.542927i
\(244\) 21.9142 15.9216i 1.40291 1.01928i
\(245\) 16.9522 3.60331i 1.08304 0.230207i
\(246\) −2.18256 6.71723i −0.139155 0.428275i
\(247\) −6.08718 −0.387318
\(248\) 0 0
\(249\) −37.1893 −2.35677
\(250\) −0.374520 1.15265i −0.0236867 0.0729002i
\(251\) 2.30514 0.489972i 0.145499 0.0309268i −0.134586 0.990902i \(-0.542971\pi\)
0.280085 + 0.959975i \(0.409637\pi\)
\(252\) −8.82367 + 6.41077i −0.555839 + 0.403841i
\(253\) −0.537595 + 0.931142i −0.0337983 + 0.0585404i
\(254\) 0.0207005 + 0.0358542i 0.00129886 + 0.00224970i
\(255\) 14.3403 + 6.38471i 0.898024 + 0.399826i
\(256\) −5.67014 4.11960i −0.354384 0.257475i
\(257\) −23.7650 + 10.5809i −1.48242 + 0.660015i −0.978969 0.204009i \(-0.934603\pi\)
−0.503450 + 0.864024i \(0.667936\pi\)
\(258\) −8.36676 1.77841i −0.520892 0.110719i
\(259\) −0.355938 3.38653i −0.0221169 0.210429i
\(260\) 10.7281 11.9147i 0.665326 0.738919i
\(261\) 11.3539 + 12.6098i 0.702789 + 0.780527i
\(262\) −0.212472 + 2.02153i −0.0131265 + 0.124891i
\(263\) −7.08747 + 21.8130i −0.437032 + 1.34505i 0.453957 + 0.891023i \(0.350012\pi\)
−0.890990 + 0.454024i \(0.849988\pi\)
\(264\) −2.96147 + 9.11446i −0.182266 + 0.560956i
\(265\) −1.54679 + 14.7167i −0.0950184 + 0.904039i
\(266\) −0.539030 0.598653i −0.0330500 0.0367058i
\(267\) −4.37415 + 4.85798i −0.267693 + 0.297304i
\(268\) −1.26271 12.0139i −0.0771325 0.733867i
\(269\) −16.6748 3.54434i −1.01668 0.216102i −0.330711 0.943732i \(-0.607288\pi\)
−0.685970 + 0.727630i \(0.740622\pi\)
\(270\) 6.54862 2.91563i 0.398536 0.177440i
\(271\) 5.86255 + 4.25939i 0.356124 + 0.258739i 0.751434 0.659809i \(-0.229363\pi\)
−0.395309 + 0.918548i \(0.629363\pi\)
\(272\) 5.45815 + 2.43013i 0.330949 + 0.147348i
\(273\) −4.49857 7.79175i −0.272266 0.471578i
\(274\) 2.07440 3.59297i 0.125319 0.217059i
\(275\) −7.55354 + 5.48797i −0.455496 + 0.330937i
\(276\) 2.34843 0.499175i 0.141359 0.0300468i
\(277\) −4.66717 14.3641i −0.280423 0.863053i −0.987733 0.156150i \(-0.950092\pi\)
0.707310 0.706903i \(-0.249908\pi\)
\(278\) 5.41979 0.325058
\(279\) 0 0
\(280\) 4.38316 0.261944
\(281\) −0.768550 2.36535i −0.0458479 0.141105i 0.925512 0.378718i \(-0.123635\pi\)
−0.971360 + 0.237613i \(0.923635\pi\)
\(282\) 7.91888 1.68321i 0.471562 0.100234i
\(283\) 3.82370 2.77808i 0.227296 0.165140i −0.468309 0.883565i \(-0.655137\pi\)
0.695605 + 0.718425i \(0.255137\pi\)
\(284\) 1.57426 2.72670i 0.0934153 0.161800i
\(285\) −9.11114 15.7810i −0.539697 0.934783i
\(286\) −2.24315 0.998713i −0.132640 0.0590551i
\(287\) −6.08114 4.41821i −0.358958 0.260798i
\(288\) 19.0153 8.46618i 1.12049 0.498874i
\(289\) 13.3715 + 2.84220i 0.786559 + 0.167188i
\(290\) −0.345043 3.28286i −0.0202616 0.192776i
\(291\) 6.60726 7.33811i 0.387325 0.430168i
\(292\) 18.0309 + 20.0254i 1.05518 + 1.17190i
\(293\) 1.10266 10.4911i 0.0644180 0.612897i −0.913922 0.405891i \(-0.866961\pi\)
0.978340 0.207006i \(-0.0663720\pi\)
\(294\) −1.83152 + 5.63683i −0.106816 + 0.328746i
\(295\) −11.0381 + 33.9719i −0.642666 + 1.97792i
\(296\) −0.448103 + 4.26342i −0.0260455 + 0.247806i
\(297\) 11.1612 + 12.3958i 0.647639 + 0.719276i
\(298\) −2.81015 + 3.12098i −0.162787 + 0.180794i
\(299\) 0.132832 + 1.26381i 0.00768188 + 0.0730882i
\(300\) 20.3932 + 4.33472i 1.17740 + 0.250265i
\(301\) −8.31624 + 3.70263i −0.479340 + 0.213416i
\(302\) −1.22885 0.892809i −0.0707121 0.0513754i
\(303\) 46.8295 + 20.8499i 2.69029 + 1.19779i
\(304\) −3.46785 6.00650i −0.198895 0.344496i
\(305\) −21.4595 + 37.1689i −1.22877 + 2.12829i
\(306\) −2.78659 + 2.02458i −0.159299 + 0.115737i
\(307\) −2.59063 + 0.550655i −0.147855 + 0.0314275i −0.281244 0.959636i \(-0.590747\pi\)
0.133390 + 0.991064i \(0.457414\pi\)
\(308\) 1.52566 + 4.69551i 0.0869327 + 0.267551i
\(309\) 23.3600 1.32890
\(310\) 0 0
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) 3.50018 + 10.7724i 0.198158 + 0.609869i
\(313\) −26.0925 + 5.54614i −1.47484 + 0.313486i −0.874016 0.485897i \(-0.838493\pi\)
−0.600821 + 0.799383i \(0.705160\pi\)
\(314\) 2.47480 1.79805i 0.139661 0.101470i
\(315\) 8.64057 14.9659i 0.486841 0.843234i
\(316\) 3.23474 + 5.60274i 0.181969 + 0.315179i
\(317\) 9.81169 + 4.36845i 0.551080 + 0.245356i 0.663335 0.748323i \(-0.269141\pi\)
−0.112255 + 0.993679i \(0.535807\pi\)
\(318\) −4.09411 2.97454i −0.229586 0.166804i
\(319\) 7.01697 3.12416i 0.392875 0.174919i
\(320\) 15.0838 + 3.20616i 0.843209 + 0.179230i
\(321\) 3.67490 + 34.9644i 0.205113 + 1.95152i
\(322\) −0.112529 + 0.124976i −0.00627100 + 0.00696465i
\(323\) 2.58643 + 2.87252i 0.143913 + 0.159831i
\(324\) 0.732749 6.97165i 0.0407083 0.387314i
\(325\) −3.41003 + 10.4950i −0.189155 + 0.582158i
\(326\) 0.339686 1.04545i 0.0188135 0.0579019i
\(327\) 0.191168 1.81884i 0.0105716 0.100582i
\(328\) 6.33201 + 7.03241i 0.349627 + 0.388300i
\(329\) 5.76519 6.40289i 0.317845 0.353003i
\(330\) −0.768331 7.31018i −0.0422952 0.402412i
\(331\) 19.2183 + 4.08497i 1.05633 + 0.224530i 0.703162 0.711029i \(-0.251771\pi\)
0.353169 + 0.935560i \(0.385104\pi\)
\(332\) 22.0345 9.81038i 1.20930 0.538415i
\(333\) 13.6737 + 9.93453i 0.749315 + 0.544409i
\(334\) 4.28759 + 1.90896i 0.234607 + 0.104454i
\(335\) 9.57021 + 16.5761i 0.522876 + 0.905649i
\(336\) 5.12565 8.87788i 0.279627 0.484328i
\(337\) 15.5159 11.2730i 0.845206 0.614078i −0.0786142 0.996905i \(-0.525050\pi\)
0.923820 + 0.382827i \(0.125050\pi\)
\(338\) 1.63012 0.346492i 0.0886667 0.0188467i
\(339\) −10.1034 31.0950i −0.548740 1.68885i
\(340\) −10.1808 −0.552133
\(341\) 0 0
\(342\) 3.99844 0.216211
\(343\) 4.28996 + 13.2031i 0.231636 + 0.712902i
\(344\) 11.2100 2.38275i 0.604401 0.128469i
\(345\) −3.07760 + 2.23601i −0.165693 + 0.120383i
\(346\) −3.34647 + 5.79626i −0.179907 + 0.311609i
\(347\) 5.32998 + 9.23180i 0.286128 + 0.495589i 0.972882 0.231301i \(-0.0742983\pi\)
−0.686754 + 0.726890i \(0.740965\pi\)
\(348\) −15.6689 6.97624i −0.839941 0.373966i
\(349\) 15.1299 + 10.9925i 0.809884 + 0.588415i 0.913797 0.406171i \(-0.133136\pi\)
−0.103913 + 0.994586i \(0.533136\pi\)
\(350\) −1.33411 + 0.593984i −0.0713112 + 0.0317498i
\(351\) 19.2836 + 4.09885i 1.02928 + 0.218781i
\(352\) −0.984903 9.37073i −0.0524955 0.499461i
\(353\) 8.47269 9.40988i 0.450956 0.500837i −0.474204 0.880415i \(-0.657264\pi\)
0.925160 + 0.379578i \(0.123931\pi\)
\(354\) −8.17392 9.07806i −0.434439 0.482493i
\(355\) −0.521462 + 4.96138i −0.0276763 + 0.263323i
\(356\) 1.31015 4.03222i 0.0694377 0.213707i
\(357\) −1.76547 + 5.43355i −0.0934384 + 0.287574i
\(358\) −0.00291416 + 0.0277264i −0.000154018 + 0.00146539i
\(359\) −15.1746 16.8531i −0.800886 0.889474i 0.194933 0.980816i \(-0.437551\pi\)
−0.995820 + 0.0913423i \(0.970884\pi\)
\(360\) −14.5575 + 16.1677i −0.767248 + 0.852115i
\(361\) 1.51701 + 14.4334i 0.0798428 + 0.759653i
\(362\) 0.743486 + 0.158033i 0.0390768 + 0.00830602i
\(363\) −13.4495 + 5.98811i −0.705917 + 0.314294i
\(364\) 4.72082 + 3.42987i 0.247438 + 0.179774i
\(365\) −39.0048 17.3661i −2.04160 0.908981i
\(366\) −7.33880 12.7112i −0.383605 0.664424i
\(367\) 4.35984 7.55147i 0.227582 0.394183i −0.729509 0.683971i \(-0.760251\pi\)
0.957091 + 0.289788i \(0.0935847\pi\)
\(368\) −1.17139 + 0.851062i −0.0610628 + 0.0443647i
\(369\) 36.4939 7.75702i 1.89980 0.403814i
\(370\) −1.01605 3.12708i −0.0528219 0.162569i
\(371\) −5.38574 −0.279614
\(372\) 0 0
\(373\) 25.4134 1.31586 0.657928 0.753081i \(-0.271433\pi\)
0.657928 + 0.753081i \(0.271433\pi\)
\(374\) 0.481817 + 1.48288i 0.0249142 + 0.0766779i
\(375\) 9.75994 2.07454i 0.504001 0.107129i
\(376\) −8.77534 + 6.37566i −0.452553 + 0.328799i
\(377\) 4.53913 7.86200i 0.233777 0.404914i
\(378\) 1.30448 + 2.25943i 0.0670954 + 0.116213i
\(379\) 20.1874 + 8.98802i 1.03696 + 0.461683i 0.853362 0.521318i \(-0.174560\pi\)
0.183596 + 0.983002i \(0.441226\pi\)
\(380\) 9.56127 + 6.94667i 0.490483 + 0.356357i
\(381\) −0.311380 + 0.138635i −0.0159525 + 0.00710250i
\(382\) 1.83622 + 0.390301i 0.0939493 + 0.0199695i
\(383\) −2.78491 26.4967i −0.142302 1.35392i −0.799712 0.600384i \(-0.795015\pi\)
0.657410 0.753533i \(-0.271652\pi\)
\(384\) −18.5339 + 20.5840i −0.945806 + 1.05042i
\(385\) −5.23442 5.81341i −0.266771 0.296279i
\(386\) 0.0783799 0.745735i 0.00398943 0.0379569i
\(387\) 13.9626 42.9726i 0.709761 2.18442i
\(388\) −1.97901 + 6.09077i −0.100469 + 0.309212i
\(389\) −1.35417 + 12.8841i −0.0686592 + 0.653249i 0.905027 + 0.425355i \(0.139851\pi\)
−0.973686 + 0.227894i \(0.926816\pi\)
\(390\) −5.81310 6.45610i −0.294358 0.326917i
\(391\) 0.539948 0.599673i 0.0273063 0.0303268i
\(392\) −0.830061 7.89750i −0.0419244 0.398884i
\(393\) −16.3690 3.47933i −0.825705 0.175509i
\(394\) 1.88640 0.839879i 0.0950355 0.0423125i
\(395\) −8.29294 6.02517i −0.417263 0.303159i
\(396\) −22.3870 9.96732i −1.12499 0.500876i
\(397\) 1.46363 + 2.53508i 0.0734574 + 0.127232i 0.900414 0.435033i \(-0.143263\pi\)
−0.826957 + 0.562265i \(0.809930\pi\)
\(398\) 1.21736 2.10852i 0.0610205 0.105691i
\(399\) 5.36549 3.89826i 0.268611 0.195157i
\(400\) −12.2986 + 2.61414i −0.614929 + 0.130707i
\(401\) 3.79302 + 11.6737i 0.189414 + 0.582957i 0.999996 0.00266786i \(-0.000849206\pi\)
−0.810582 + 0.585625i \(0.800849\pi\)
\(402\) −6.54572 −0.326471
\(403\) 0 0
\(404\) −33.2464 −1.65407
\(405\) 3.43229 + 10.5635i 0.170552 + 0.524905i
\(406\) 1.17515 0.249785i 0.0583216 0.0123966i
\(407\) 6.18972 4.49710i 0.306813 0.222913i
\(408\) 3.59625 6.22889i 0.178041 0.308376i
\(409\) −8.59861 14.8932i −0.425174 0.736423i 0.571263 0.820767i \(-0.306454\pi\)
−0.996437 + 0.0843442i \(0.973120\pi\)
\(410\) −6.63056 2.95211i −0.327460 0.145795i
\(411\) 27.6332 + 20.0767i 1.36305 + 0.990311i
\(412\) −13.8407 + 6.16228i −0.681882 + 0.303594i
\(413\) −12.7165 2.70297i −0.625738 0.133005i
\(414\) −0.0872523 0.830150i −0.00428822 0.0407997i
\(415\) −25.5720 + 28.4006i −1.25528 + 1.39413i
\(416\) −7.45166 8.27590i −0.365348 0.405760i
\(417\) −4.66410 + 44.3759i −0.228402 + 2.17310i
\(418\) 0.559316 1.72140i 0.0273571 0.0841963i
\(419\) 7.15236 22.0127i 0.349416 1.07539i −0.609762 0.792585i \(-0.708735\pi\)
0.959177 0.282806i \(-0.0912652\pi\)
\(420\) −1.82591 + 17.3724i −0.0890955 + 0.847687i
\(421\) 19.5267 + 21.6866i 0.951674 + 1.05694i 0.998315 + 0.0580298i \(0.0184818\pi\)
−0.0466404 + 0.998912i \(0.514851\pi\)
\(422\) 3.92913 4.36374i 0.191267 0.212424i
\(423\) 4.47019 + 42.5310i 0.217348 + 2.06793i
\(424\) 6.63213 + 1.40970i 0.322085 + 0.0684612i
\(425\) 6.40146 2.85011i 0.310516 0.138251i
\(426\) −1.38023 1.00280i −0.0668723 0.0485856i
\(427\) −14.2702 6.35348i −0.690581 0.307467i
\(428\) −11.4008 19.7468i −0.551080 0.954498i
\(429\) 10.1076 17.5069i 0.487999 0.845239i
\(430\) −7.11126 + 5.16664i −0.342936 + 0.249157i
\(431\) −29.6890 + 6.31058i −1.43007 + 0.303970i −0.856906 0.515473i \(-0.827616\pi\)
−0.573161 + 0.819443i \(0.694283\pi\)
\(432\) 6.94129 + 21.3631i 0.333963 + 1.02783i
\(433\) 13.8400 0.665107 0.332553 0.943084i \(-0.392090\pi\)
0.332553 + 0.943084i \(0.392090\pi\)
\(434\) 0 0
\(435\) 27.1762 1.30300
\(436\) 0.366536 + 1.12808i 0.0175539 + 0.0540254i
\(437\) −0.916264 + 0.194758i −0.0438309 + 0.00931654i
\(438\) 11.8128 8.58247i 0.564435 0.410086i
\(439\) −6.46006 + 11.1892i −0.308322 + 0.534029i −0.977995 0.208626i \(-0.933101\pi\)
0.669674 + 0.742656i \(0.266434\pi\)
\(440\) 4.92414 + 8.52887i 0.234749 + 0.406598i
\(441\) −28.6016 12.7343i −1.36198 0.606394i
\(442\) 1.49087 + 1.08318i 0.0709136 + 0.0515218i
\(443\) 21.7043 9.66336i 1.03120 0.459120i 0.179837 0.983696i \(-0.442443\pi\)
0.851363 + 0.524577i \(0.175776\pi\)
\(444\) −16.7112 3.55207i −0.793076 0.168574i
\(445\) 0.702188 + 6.68087i 0.0332869 + 0.316704i
\(446\) 1.47243 1.63530i 0.0697217 0.0774338i
\(447\) −23.1355 25.6946i −1.09427 1.21531i
\(448\) −0.586664 + 5.58174i −0.0277173 + 0.263712i
\(449\) 5.99891 18.4627i 0.283106 0.871311i −0.703854 0.710345i \(-0.748539\pi\)
0.986960 0.160966i \(-0.0514610\pi\)
\(450\) 2.23992 6.89377i 0.105591 0.324975i
\(451\) 1.76537 16.7964i 0.0831279 0.790909i
\(452\) 14.1889 + 15.7584i 0.667392 + 0.741213i
\(453\) 8.36760 9.29316i 0.393144 0.436631i
\(454\) 0.288276 + 2.74276i 0.0135295 + 0.128724i
\(455\) −9.04367 1.92229i −0.423974 0.0901184i
\(456\) −7.62756 + 3.39601i −0.357193 + 0.159033i
\(457\) 19.6931 + 14.3078i 0.921202 + 0.669293i 0.943823 0.330452i \(-0.107201\pi\)
−0.0226207 + 0.999744i \(0.507201\pi\)
\(458\) −4.10076 1.82578i −0.191616 0.0853129i
\(459\) −6.25931 10.8414i −0.292159 0.506035i
\(460\) 1.23362 2.13669i 0.0575177 0.0996235i
\(461\) −31.0202 + 22.5375i −1.44476 + 1.04968i −0.457734 + 0.889089i \(0.651339\pi\)
−0.987022 + 0.160587i \(0.948661\pi\)
\(462\) 2.61678 0.556214i 0.121744 0.0258774i
\(463\) 2.03775 + 6.27154i 0.0947022 + 0.291463i 0.987176 0.159636i \(-0.0510320\pi\)
−0.892474 + 0.451099i \(0.851032\pi\)
\(464\) 10.3437 0.480195
\(465\) 0 0
\(466\) 4.46933 0.207038
\(467\) 11.8667 + 36.5219i 0.549125 + 1.69003i 0.710975 + 0.703217i \(0.248254\pi\)
−0.161850 + 0.986815i \(0.551746\pi\)
\(468\) −28.3304 + 6.02181i −1.30957 + 0.278358i
\(469\) −5.63584 + 4.09468i −0.260239 + 0.189075i
\(470\) 4.15973 7.20487i 0.191874 0.332336i
\(471\) 12.5922 + 21.8104i 0.580220 + 1.00497i
\(472\) 14.9519 + 6.65702i 0.688217 + 0.306414i
\(473\) −16.5473 12.0223i −0.760846 0.552787i
\(474\) 3.20248 1.42584i 0.147095 0.0654909i
\(475\) −7.95662 1.69123i −0.365075 0.0775990i
\(476\) −0.387317 3.68508i −0.0177527 0.168905i
\(477\) 17.8873 19.8659i 0.819003 0.909595i
\(478\) 5.97871 + 6.64002i 0.273460 + 0.303708i
\(479\) −0.786592 + 7.48393i −0.0359403 + 0.341949i 0.961745 + 0.273947i \(0.0883292\pi\)
−0.997685 + 0.0680025i \(0.978337\pi\)
\(480\) 10.3017 31.7055i 0.470208 1.44715i
\(481\) 2.79434 8.60009i 0.127411 0.392130i
\(482\) 0.0867299 0.825180i 0.00395044 0.0375859i
\(483\) −0.926435 1.02891i −0.0421543 0.0468171i
\(484\) 6.38915 7.09587i 0.290416 0.322539i
\(485\) −1.06067 10.0916i −0.0481627 0.458237i
\(486\) 3.35939 + 0.714060i 0.152385 + 0.0323904i
\(487\) −22.8681 + 10.1815i −1.03625 + 0.461369i −0.853118 0.521718i \(-0.825291\pi\)
−0.183135 + 0.983088i \(0.558625\pi\)
\(488\) 15.9096 + 11.5590i 0.720194 + 0.523252i
\(489\) 8.26753 + 3.68094i 0.373870 + 0.166458i
\(490\) 3.04533 + 5.27467i 0.137574 + 0.238285i
\(491\) −19.8550 + 34.3899i −0.896044 + 1.55199i −0.0635377 + 0.997979i \(0.520238\pi\)
−0.832507 + 0.554015i \(0.813095\pi\)
\(492\) −30.5103 + 22.1671i −1.37551 + 0.999368i
\(493\) −5.63871 + 1.19854i −0.253955 + 0.0539797i
\(494\) −0.661059 2.03453i −0.0297425 0.0915379i
\(495\) 38.8281 1.74519
\(496\) 0 0
\(497\) −1.81567 −0.0814440
\(498\) −4.03870 12.4298i −0.180979 0.556995i
\(499\) −23.1372 + 4.91796i −1.03576 + 0.220158i −0.694261 0.719723i \(-0.744269\pi\)
−0.341501 + 0.939881i \(0.610935\pi\)
\(500\) −5.23547 + 3.80379i −0.234137 + 0.170111i
\(501\) −19.3199 + 33.4630i −0.863148 + 1.49502i
\(502\) 0.414099 + 0.717241i 0.0184822 + 0.0320120i
\(503\) −18.4412 8.21056i −0.822253 0.366091i −0.0479063 0.998852i \(-0.515255\pi\)
−0.774347 + 0.632761i \(0.781922\pi\)
\(504\) −6.40594 4.65419i −0.285343 0.207314i
\(505\) 48.1234 21.4259i 2.14146 0.953440i
\(506\) −0.369600 0.0785608i −0.0164307 0.00349245i
\(507\) 1.43417 + 13.6452i 0.0636936 + 0.606004i
\(508\) 0.147920 0.164282i 0.00656288 0.00728882i
\(509\) −7.92184 8.79810i −0.351130 0.389969i 0.541544 0.840672i \(-0.317840\pi\)
−0.892674 + 0.450703i \(0.851173\pi\)
\(510\) −0.576639 + 5.48636i −0.0255340 + 0.242940i
\(511\) 4.80197 14.7789i 0.212427 0.653782i
\(512\) 6.67779 20.5521i 0.295120 0.908285i
\(513\) −1.51903 + 14.4526i −0.0670667 + 0.638097i
\(514\) −6.11730 6.79395i −0.269823 0.299669i
\(515\) 16.0627 17.8395i 0.707809 0.786102i
\(516\) 4.77412 + 45.4227i 0.210169 + 1.99962i
\(517\) 18.9357 + 4.02490i 0.832790 + 0.177015i
\(518\) 1.09323 0.486738i 0.0480338 0.0213860i
\(519\) −44.5784 32.3881i −1.95678 1.42168i
\(520\) 10.6334 + 4.73431i 0.466307 + 0.207613i
\(521\) 16.3742 + 28.3610i 0.717368 + 1.24252i 0.962039 + 0.272911i \(0.0879865\pi\)
−0.244672 + 0.969606i \(0.578680\pi\)
\(522\) −2.98158 + 5.16425i −0.130500 + 0.226033i
\(523\) −23.8682 + 17.3412i −1.04368 + 0.758279i −0.971001 0.239076i \(-0.923155\pi\)
−0.0726806 + 0.997355i \(0.523155\pi\)
\(524\) 10.6164 2.25658i 0.463779 0.0985792i
\(525\) −3.71530 11.4345i −0.162149 0.499044i
\(526\) −8.06030 −0.351446
\(527\) 0 0
\(528\) 23.0331 1.00239
\(529\) −7.04696 21.6883i −0.306390 0.942970i
\(530\) −5.08677 + 1.08123i −0.220955 + 0.0469655i
\(531\) 52.2047 37.9289i 2.26549 1.64597i
\(532\) −2.15069 + 3.72510i −0.0932441 + 0.161504i
\(533\) −9.98053 17.2868i −0.432305 0.748774i
\(534\) −2.09872 0.934410i −0.0908205 0.0404359i
\(535\) 29.2284 + 21.2357i 1.26365 + 0.918098i
\(536\) 8.01188 3.56712i 0.346060 0.154076i
\(537\) −0.224509 0.0477209i −0.00968828 0.00205931i
\(538\) −0.626228 5.95817i −0.0269986 0.256875i
\(539\) −9.48323 + 10.5322i −0.408472 + 0.453654i
\(540\) −25.6116 28.4445i −1.10215 1.22406i
\(541\) −1.38666 + 13.1932i −0.0596170 + 0.567218i 0.923417 + 0.383797i \(0.125384\pi\)
−0.983034 + 0.183421i \(0.941283\pi\)
\(542\) −0.786961 + 2.42202i −0.0338028 + 0.104034i
\(543\) −1.93375 + 5.95148i −0.0829853 + 0.255403i
\(544\) −0.739178 + 7.03281i −0.0316920 + 0.301529i
\(545\) −1.25755 1.39666i −0.0538677 0.0598261i
\(546\) 2.11571 2.34974i 0.0905442 0.100560i
\(547\) −3.94740 37.5570i −0.168779 1.60582i −0.671253 0.741228i \(-0.734244\pi\)
0.502474 0.864592i \(-0.332423\pi\)
\(548\) −21.6687 4.60583i −0.925642 0.196751i
\(549\) 70.8300 31.5356i 3.02295 1.34590i
\(550\) −2.65456 1.92865i −0.113191 0.0822380i
\(551\) 6.11337 + 2.72185i 0.260438 + 0.115955i
\(552\) 0.871520 + 1.50952i 0.0370944 + 0.0642493i
\(553\) 1.86539 3.23095i 0.0793245 0.137394i
\(554\) 4.29408 3.11983i 0.182438 0.132549i
\(555\) 26.4781 5.62810i 1.12393 0.238900i
\(556\) −8.94274 27.5229i −0.379257 1.16723i
\(557\) 11.3637 0.481496 0.240748 0.970588i \(-0.422607\pi\)
0.240748 + 0.970588i \(0.422607\pi\)
\(558\) 0 0
\(559\) −24.1743 −1.02246
\(560\) −3.25535 10.0189i −0.137563 0.423377i
\(561\) −12.5561 + 2.66888i −0.530119 + 0.112680i
\(562\) 0.707114 0.513748i 0.0298278 0.0216712i
\(563\) 10.0933 17.4821i 0.425381 0.736781i −0.571075 0.820898i \(-0.693474\pi\)
0.996456 + 0.0841167i \(0.0268068\pi\)
\(564\) −21.6140 37.4365i −0.910113 1.57636i
\(565\) −30.6938 13.6657i −1.29130 0.574922i
\(566\) 1.34377 + 0.976309i 0.0564830 + 0.0410373i
\(567\) −3.69302 + 1.64424i −0.155092 + 0.0690515i
\(568\) 2.23586 + 0.475247i 0.0938147 + 0.0199409i
\(569\) −3.23930 30.8199i −0.135799 1.29204i −0.824030 0.566546i \(-0.808279\pi\)
0.688232 0.725491i \(-0.258387\pi\)
\(570\) 4.28505 4.75903i 0.179481 0.199334i
\(571\) 6.95876 + 7.72848i 0.291215 + 0.323427i 0.870944 0.491382i \(-0.163508\pi\)
−0.579729 + 0.814809i \(0.696842\pi\)
\(572\) −1.37046 + 13.0391i −0.0573019 + 0.545192i
\(573\) −4.77588 + 14.6987i −0.199515 + 0.614045i
\(574\) 0.816303 2.51232i 0.0340718 0.104862i
\(575\) −0.177505 + 1.68885i −0.00740247 + 0.0704298i
\(576\) −18.6404 20.7022i −0.776682 0.862593i
\(577\) 3.62258 4.02328i 0.150810 0.167491i −0.663006 0.748614i \(-0.730720\pi\)
0.813816 + 0.581123i \(0.197386\pi\)
\(578\) 0.502172 + 4.77785i 0.0208876 + 0.198732i
\(579\) 6.03845 + 1.28351i 0.250949 + 0.0533409i
\(580\) −16.1018 + 7.16898i −0.668591 + 0.297676i
\(581\) −11.2528 8.17564i −0.466845 0.339183i
\(582\) 3.17017 + 1.41145i 0.131408 + 0.0585065i
\(583\) −6.05046 10.4797i −0.250585 0.434025i
\(584\) −9.78162 + 16.9423i −0.404766 + 0.701076i
\(585\) 37.1267 26.9741i 1.53500 1.11524i
\(586\) 3.62621 0.770775i 0.149797 0.0318404i
\(587\) 3.88212 + 11.9479i 0.160232 + 0.493145i 0.998653 0.0518785i \(-0.0165209\pi\)
−0.838421 + 0.545023i \(0.816521\pi\)
\(588\) 31.6471 1.30510
\(589\) 0 0
\(590\) −12.5532 −0.516809
\(591\) 5.25335 + 16.1682i 0.216094 + 0.665069i
\(592\) 10.0780 2.14215i 0.414204 0.0880418i
\(593\) −21.9001 + 15.9114i −0.899330 + 0.653401i −0.938294 0.345839i \(-0.887594\pi\)
0.0389638 + 0.999241i \(0.487594\pi\)
\(594\) −2.93098 + 5.07660i −0.120259 + 0.208295i
\(595\) 2.93551 + 5.08445i 0.120344 + 0.208442i
\(596\) 20.4858 + 9.12088i 0.839133 + 0.373606i
\(597\) 16.2164 + 11.7819i 0.663695 + 0.482202i
\(598\) −0.407981 + 0.181645i −0.0166836 + 0.00742802i
\(599\) 14.0414 + 2.98459i 0.573716 + 0.121947i 0.485628 0.874166i \(-0.338591\pi\)
0.0880878 + 0.996113i \(0.471924\pi\)
\(600\) 1.58216 + 15.0532i 0.0645914 + 0.614546i
\(601\) −0.428255 + 0.475625i −0.0174689 + 0.0194012i −0.751816 0.659373i \(-0.770822\pi\)
0.734347 + 0.678774i \(0.237488\pi\)
\(602\) −2.14067 2.37745i −0.0872471 0.0968978i
\(603\) 3.61430 34.3877i 0.147186 1.40038i
\(604\) −2.50627 + 7.71350i −0.101979 + 0.313858i
\(605\) −4.67515 + 14.3886i −0.190072 + 0.584981i
\(606\) −1.88307 + 17.9162i −0.0764944 + 0.727796i
\(607\) −4.36127 4.84368i −0.177019 0.196599i 0.648106 0.761551i \(-0.275562\pi\)
−0.825124 + 0.564951i \(0.808895\pi\)
\(608\) 5.49289 6.10047i 0.222766 0.247407i
\(609\) 1.03389 + 9.83677i 0.0418952 + 0.398606i
\(610\) −14.7535 3.13596i −0.597352 0.126971i
\(611\) 20.9021 9.30620i 0.845607 0.376489i
\(612\) 14.8792 + 10.8103i 0.601454 + 0.436982i
\(613\) −9.54228 4.24850i −0.385409 0.171595i 0.204880 0.978787i \(-0.434320\pi\)
−0.590289 + 0.807192i \(0.700986\pi\)
\(614\) −0.465385 0.806070i −0.0187814 0.0325303i
\(615\) 29.8772 51.7489i 1.20477 2.08672i
\(616\) −2.89980 + 2.10683i −0.116836 + 0.0848864i
\(617\) −21.2291 + 4.51238i −0.854651 + 0.181662i −0.614347 0.789036i \(-0.710580\pi\)
−0.240304 + 0.970698i \(0.577247\pi\)
\(618\) 2.53686 + 7.80766i 0.102048 + 0.314070i
\(619\) −28.5478 −1.14743 −0.573716 0.819054i \(-0.694499\pi\)
−0.573716 + 0.819054i \(0.694499\pi\)
\(620\) 0 0
\(621\) 3.03377 0.121741
\(622\) 0.598686 + 1.84257i 0.0240051 + 0.0738802i
\(623\) −2.39151 + 0.508331i −0.0958139 + 0.0203659i
\(624\) 22.0238 16.0012i 0.881658 0.640562i
\(625\) 14.7271 25.5080i 0.589083 1.02032i
\(626\) −4.68731 8.11866i −0.187343 0.324487i
\(627\) 13.6131 + 6.06092i 0.543653 + 0.242050i
\(628\) −13.2143 9.60079i −0.527310 0.383113i
\(629\) −5.24565 + 2.33551i −0.209158 + 0.0931231i
\(630\) 5.94044 + 1.26268i 0.236673 + 0.0503064i
\(631\) 2.84741 + 27.0913i 0.113354 + 1.07849i 0.892314 + 0.451414i \(0.149080\pi\)
−0.778961 + 0.627072i \(0.784253\pi\)
\(632\) −3.14278 + 3.49041i −0.125013 + 0.138841i
\(633\) 32.3480 + 35.9261i 1.28572 + 1.42793i
\(634\) −0.394539 + 3.75379i −0.0156692 + 0.149082i
\(635\) −0.108238 + 0.333122i −0.00429529 + 0.0132195i
\(636\) −8.35006 + 25.6988i −0.331101 + 1.01903i
\(637\) −1.75091 + 16.6588i −0.0693735 + 0.660044i
\(638\) 1.80623 + 2.00602i 0.0715092 + 0.0794190i
\(639\) 6.03027 6.69729i 0.238554 0.264941i
\(640\) 2.97528 + 28.3079i 0.117608 + 1.11897i
\(641\) 40.3076 + 8.56764i 1.59205 + 0.338402i 0.916851 0.399230i \(-0.130722\pi\)
0.675204 + 0.737632i \(0.264056\pi\)
\(642\) −11.2871 + 5.02535i −0.445467 + 0.198335i
\(643\) −24.9278 18.1111i −0.983055 0.714232i −0.0246661 0.999696i \(-0.507852\pi\)
−0.958389 + 0.285464i \(0.907852\pi\)
\(644\) 0.820332 + 0.365235i 0.0323256 + 0.0143923i
\(645\) −36.1834 62.6715i −1.42472 2.46769i
\(646\) −0.679205 + 1.17642i −0.0267230 + 0.0462855i
\(647\) 7.21333 5.24079i 0.283585 0.206037i −0.436894 0.899513i \(-0.643922\pi\)
0.720480 + 0.693476i \(0.243922\pi\)
\(648\) 4.97805 1.05812i 0.195556 0.0415667i
\(649\) −9.02649 27.7807i −0.354321 1.09049i
\(650\) −3.87809 −0.152111
\(651\) 0 0
\(652\) −5.86949 −0.229867
\(653\) 12.1263 + 37.3208i 0.474537 + 1.46047i 0.846581 + 0.532260i \(0.178657\pi\)
−0.372044 + 0.928215i \(0.621343\pi\)
\(654\) 0.628675 0.133629i 0.0245831 0.00522530i
\(655\) −13.9127 + 10.1082i −0.543613 + 0.394958i
\(656\) 11.3718 19.6965i 0.443993 0.769018i
\(657\) 38.5652 + 66.7969i 1.50457 + 2.60600i
\(658\) 2.76614 + 1.23157i 0.107836 + 0.0480115i
\(659\) −26.6600 19.3696i −1.03853 0.754533i −0.0685280 0.997649i \(-0.521830\pi\)
−0.969997 + 0.243117i \(0.921830\pi\)
\(660\) −35.8550 + 15.9637i −1.39565 + 0.621385i
\(661\) 0.165967 + 0.0352774i 0.00645538 + 0.00137213i 0.211138 0.977456i \(-0.432283\pi\)
−0.204683 + 0.978828i \(0.565616\pi\)
\(662\) 0.721749 + 6.86698i 0.0280516 + 0.266893i
\(663\) −10.1518 + 11.2747i −0.394264 + 0.437875i
\(664\) 11.7170 + 13.0131i 0.454709 + 0.505005i
\(665\) 0.712398 6.77802i 0.0276256 0.262840i
\(666\) −1.83549 + 5.64907i −0.0711240 + 0.218897i
\(667\) 0.431703 1.32864i 0.0167156 0.0514453i
\(668\) 2.61953 24.9232i 0.101353 0.964307i
\(669\) 12.1223 + 13.4632i 0.468676 + 0.520518i
\(670\) −4.50095 + 4.99881i −0.173887 + 0.193121i
\(671\) −3.66865 34.9049i −0.141627 1.34749i
\(672\) 11.8681 + 2.52265i 0.457823 + 0.0973133i
\(673\) 13.3253 5.93280i 0.513652 0.228693i −0.133507 0.991048i \(-0.542624\pi\)
0.647159 + 0.762355i \(0.275957\pi\)
\(674\) 5.45280 + 3.96169i 0.210034 + 0.152599i
\(675\) 24.0670 + 10.7153i 0.926338 + 0.412432i
\(676\) −4.44929 7.70639i −0.171126 0.296400i
\(677\) 7.88341 13.6545i 0.302984 0.524784i −0.673826 0.738890i \(-0.735350\pi\)
0.976810 + 0.214106i \(0.0686837\pi\)
\(678\) 9.29573 6.75374i 0.357000 0.259376i
\(679\) 3.61244 0.767848i 0.138633 0.0294673i
\(680\) −2.28401 7.02948i −0.0875880 0.269568i
\(681\) −22.7051 −0.870063
\(682\) 0 0
\(683\) 20.5935 0.787988 0.393994 0.919113i \(-0.371093\pi\)
0.393994 + 0.919113i \(0.371093\pi\)
\(684\) −6.59748 20.3050i −0.252261 0.776380i
\(685\) 34.3332 7.29775i 1.31180 0.278833i
\(686\) −3.94703 + 2.86768i −0.150698 + 0.109489i
\(687\) 18.4780 32.0048i 0.704979 1.22106i
\(688\) −13.7720 23.8538i −0.525053 0.909418i
\(689\) −13.0657 5.81721i −0.497763 0.221618i
\(690\) −1.08157 0.785806i −0.0411746 0.0299151i
\(691\) −5.43716 + 2.42078i −0.206839 + 0.0920908i −0.507542 0.861627i \(-0.669446\pi\)
0.300702 + 0.953718i \(0.402779\pi\)
\(692\) 34.9564 + 7.43021i 1.32884 + 0.282454i
\(693\) 1.47717 + 14.0543i 0.0561130 + 0.533879i
\(694\) −2.50673 + 2.78401i −0.0951543 + 0.105680i
\(695\) 30.6817 + 34.0755i 1.16383 + 1.29256i
\(696\) 1.30160 12.3839i 0.0493369 0.469409i
\(697\) −3.91687 + 12.0549i −0.148362 + 0.456611i
\(698\) −2.03096 + 6.25066i −0.0768731 + 0.236591i
\(699\) −3.84616 + 36.5938i −0.145475 + 1.38410i
\(700\) 5.21769 + 5.79483i 0.197210 + 0.219024i
\(701\) −17.8192 + 19.7903i −0.673023 + 0.747468i −0.978841 0.204622i \(-0.934403\pi\)
0.305818 + 0.952090i \(0.401070\pi\)
\(702\) 0.724202 + 6.89032i 0.0273333 + 0.260059i
\(703\) 6.52002 + 1.38587i 0.245907 + 0.0522692i
\(704\) −11.5202 + 5.12911i −0.434182 + 0.193311i
\(705\) 55.4120 + 40.2591i 2.08693 + 1.51625i
\(706\) 4.06521 + 1.80995i 0.152996 + 0.0681183i
\(707\) 9.58617 + 16.6037i 0.360525 + 0.624448i
\(708\) −32.6133 + 56.4879i −1.22568 + 2.12295i
\(709\) −2.13805 + 1.55338i −0.0802962 + 0.0583386i −0.627209 0.778851i \(-0.715803\pi\)
0.546913 + 0.837189i \(0.315803\pi\)
\(710\) −1.71488 + 0.364509i −0.0643584 + 0.0136798i
\(711\) 5.72231 + 17.6114i 0.214603 + 0.660481i
\(712\) 3.07802 0.115354
\(713\) 0 0
\(714\) −2.00779 −0.0751398
\(715\) −6.41943 19.7570i −0.240073 0.738868i
\(716\) 0.145609 0.0309502i 0.00544168 0.00115666i
\(717\) −59.5120 + 43.2380i −2.22251 + 1.61475i
\(718\) 3.98491 6.90207i 0.148716 0.257583i
\(719\) 2.59912 + 4.50181i 0.0969308 + 0.167889i 0.910413 0.413701i \(-0.135764\pi\)
−0.813482 + 0.581590i \(0.802431\pi\)
\(720\) 47.7676 + 21.2675i 1.78019 + 0.792593i
\(721\) 7.06832 + 5.13543i 0.263238 + 0.191253i
\(722\) −4.65937 + 2.07448i −0.173404 + 0.0772043i
\(723\) 6.68173 + 1.42025i 0.248496 + 0.0528195i
\(724\) −0.424237 4.03635i −0.0157667 0.150010i
\(725\) 8.11748 9.01537i 0.301476 0.334823i
\(726\) −3.46202 3.84496i −0.128488 0.142700i
\(727\) −2.53026 + 24.0738i −0.0938422 + 0.892849i 0.841774 + 0.539830i \(0.181512\pi\)
−0.935616 + 0.353019i \(0.885155\pi\)
\(728\) −1.30911 + 4.02902i −0.0485188 + 0.149325i
\(729\) −12.2007 + 37.5499i −0.451878 + 1.39074i
\(730\) 1.56843 14.9226i 0.0580501 0.552310i
\(731\) 10.2716 + 11.4077i 0.379908 + 0.421930i
\(732\) −52.4411 + 58.2417i −1.93828 + 2.15267i
\(733\) −4.21906 40.1416i −0.155834 1.48267i −0.740865 0.671654i \(-0.765584\pi\)
0.585030 0.811011i \(-0.301083\pi\)
\(734\) 2.99742 + 0.637120i 0.110637 + 0.0235165i
\(735\) −45.8084 + 20.3952i −1.68967 + 0.752289i
\(736\) −1.38644 1.00730i −0.0511047 0.0371297i
\(737\) −14.2990 6.36631i −0.526709 0.234506i
\(738\) 6.55583 + 11.3550i 0.241324 + 0.417985i
\(739\) 3.04893 5.28089i 0.112157 0.194261i −0.804483 0.593976i \(-0.797558\pi\)
0.916640 + 0.399715i \(0.130891\pi\)
\(740\) −14.2035 + 10.3195i −0.522132 + 0.379351i
\(741\) 17.2271 3.66174i 0.632854 0.134517i
\(742\) −0.584884 1.80009i −0.0214718 0.0660833i
\(743\) −16.2263 −0.595284 −0.297642 0.954678i \(-0.596200\pi\)
−0.297642 + 0.954678i \(0.596200\pi\)
\(744\) 0 0
\(745\) −35.5308 −1.30175
\(746\) 2.75986 + 8.49397i 0.101046 + 0.310986i
\(747\) 67.5299 14.3539i 2.47079 0.525182i
\(748\) 6.73540 4.89355i 0.246270 0.178926i
\(749\) −6.57456 + 11.3875i −0.240229 + 0.416089i
\(750\) 1.75329 + 3.03680i 0.0640213 + 0.110888i
\(751\) 33.2937 + 14.8233i 1.21490 + 0.540910i 0.911242 0.411870i \(-0.135124\pi\)
0.303661 + 0.952780i \(0.401791\pi\)
\(752\) 21.0907 + 15.3233i 0.769099 + 0.558783i
\(753\) −6.22895 + 2.77331i −0.226996 + 0.101065i
\(754\) 3.12068 + 0.663320i 0.113648 + 0.0241567i
\(755\) −1.34326 12.7803i −0.0488863 0.465122i
\(756\) 9.32149 10.3526i 0.339019 0.376519i
\(757\) −29.1488 32.3730i −1.05943 1.17662i −0.983761 0.179484i \(-0.942557\pi\)
−0.0756702 0.997133i \(-0.524110\pi\)
\(758\) −0.811759 + 7.72337i −0.0294844 + 0.280525i
\(759\) 0.961302 2.95858i 0.0348931 0.107390i
\(760\) −2.65139 + 8.16015i −0.0961761 + 0.296000i
\(761\) 0.344869 3.28120i 0.0125015 0.118944i −0.986491 0.163813i \(-0.947621\pi\)
0.998993 + 0.0448696i \(0.0142872\pi\)
\(762\) −0.0801518 0.0890175i −0.00290359 0.00322477i
\(763\) 0.457695 0.508322i 0.0165697 0.0184025i
\(764\) −1.04776 9.96875i −0.0379066 0.360657i
\(765\) −28.5040 6.05872i −1.03057 0.219053i
\(766\) 8.55360 3.80831i 0.309054 0.137600i
\(767\) −27.9304 20.2926i −1.00851 0.732724i
\(768\) 18.5250 + 8.24787i 0.668464 + 0.297619i
\(769\) 22.8568 + 39.5891i 0.824237 + 1.42762i 0.902501 + 0.430688i \(0.141729\pi\)
−0.0782634 + 0.996933i \(0.524938\pi\)
\(770\) 1.37458 2.38084i 0.0495363 0.0857995i
\(771\) 60.8916 44.2403i 2.19296 1.59328i
\(772\) −3.91634 + 0.832444i −0.140952 + 0.0299603i
\(773\) −9.27071 28.5323i −0.333444 1.02624i −0.967483 0.252935i \(-0.918604\pi\)
0.634039 0.773301i \(-0.281396\pi\)
\(774\) 15.8791 0.570764
\(775\) 0 0
\(776\) −4.64943 −0.166905
\(777\) 3.04449 + 9.36998i 0.109221 + 0.336146i
\(778\) −4.45334 + 0.946586i −0.159660 + 0.0339368i
\(779\) 11.9039 8.64869i 0.426501 0.309871i
\(780\) −23.1938 + 40.1729i −0.830472 + 1.43842i
\(781\) −2.03977 3.53298i −0.0729886 0.126420i
\(782\) 0.259068 + 0.115344i 0.00926424 + 0.00412471i
\(783\) −17.5338 12.7390i −0.626605 0.455256i
\(784\) −17.4354 + 7.76276i −0.622694 + 0.277241i
\(785\) 25.3147 + 5.38081i 0.903522 + 0.192050i
\(786\) −0.614743 5.84889i −0.0219271 0.208623i
\(787\) 28.9278 32.1276i 1.03117 1.14523i 0.0418969 0.999122i \(-0.486660\pi\)
0.989269 0.146104i \(-0.0466734\pi\)
\(788\) −7.37769 8.19375i −0.262819 0.291890i
\(789\) 6.93643 65.9957i 0.246943 2.34951i
\(790\) 1.11320 3.42609i 0.0396061 0.121895i
\(791\) 3.77878 11.6299i 0.134358 0.413511i
\(792\) 1.85966 17.6935i 0.0660801 0.628710i
\(793\) −27.7566 30.8268i −0.985665 1.09469i
\(794\) −0.688356 + 0.764497i −0.0244289 + 0.0271310i
\(795\) −4.47531 42.5797i −0.158723 1.51015i
\(796\) −12.7162 2.70291i −0.450714 0.0958022i
\(797\) −20.8505 + 9.28325i −0.738564 + 0.328830i −0.741307 0.671167i \(-0.765794\pi\)
0.00274302 + 0.999996i \(0.499127\pi\)
\(798\) 1.88561 + 1.36998i 0.0667498 + 0.0484966i
\(799\) −13.2728 5.90943i −0.469557 0.209060i
\(800\) −7.44080 12.8878i −0.263072 0.455654i
\(801\) 6.06773 10.5096i 0.214393 0.371339i
\(802\) −3.48981 + 2.53550i −0.123230 + 0.0895315i
\(803\) 34.1519 7.25921i 1.20519 0.256172i
\(804\) 10.8005 + 33.2406i 0.380905 + 1.17231i
\(805\) −1.42279 −0.0501467
\(806\) 0 0
\(807\) 49.3229 1.73625
\(808\) −7.45866 22.9554i −0.262395 0.807568i
\(809\) −20.7743 + 4.41572i −0.730386 + 0.155248i −0.558070 0.829794i \(-0.688458\pi\)
−0.172315 + 0.985042i \(0.555125\pi\)
\(810\) −3.15792 + 2.29437i −0.110958 + 0.0806158i
\(811\) −1.06157 + 1.83869i −0.0372767 + 0.0645652i −0.884062 0.467370i \(-0.845202\pi\)
0.846785 + 0.531935i \(0.178535\pi\)
\(812\) −3.20748 5.55551i −0.112560 0.194960i
\(813\) −19.1536 8.52775i −0.671747 0.299081i
\(814\) 2.17527 + 1.58043i 0.0762431 + 0.0553939i
\(815\) 8.49595 3.78264i 0.297600 0.132500i
\(816\) −16.9088 3.59407i −0.591925 0.125818i
\(817\) −1.86267 17.7221i −0.0651665 0.620018i
\(818\) 4.04400 4.49132i 0.141395 0.157035i
\(819\) 11.1761 + 12.4123i 0.390524 + 0.433720i
\(820\) −4.05098 + 38.5425i −0.141466 + 1.34596i
\(821\) −12.9144 + 39.7465i −0.450716 + 1.38716i 0.425376 + 0.905017i \(0.360142\pi\)
−0.876092 + 0.482144i \(0.839858\pi\)
\(822\) −3.70935 + 11.4162i −0.129379 + 0.398186i
\(823\) 1.70366 16.2092i 0.0593858 0.565018i −0.923860 0.382731i \(-0.874984\pi\)
0.983245 0.182286i \(-0.0583498\pi\)
\(824\) −7.35991 8.17401i −0.256395 0.284755i
\(825\) 18.0757 20.0752i 0.629317 0.698927i
\(826\) −0.477573 4.54380i −0.0166169 0.158099i
\(827\) −30.4101 6.46387i −1.05746 0.224771i −0.353813 0.935316i \(-0.615115\pi\)
−0.703651 + 0.710545i \(0.748448\pi\)
\(828\) −4.07172 + 1.81285i −0.141502 + 0.0630008i
\(829\) −22.6920 16.4867i −0.788125 0.572606i 0.119282 0.992860i \(-0.461941\pi\)
−0.907406 + 0.420254i \(0.861941\pi\)
\(830\) −12.2695 5.46272i −0.425879 0.189614i
\(831\) 21.8491 + 37.8437i 0.757936 + 1.31278i
\(832\) −7.45215 + 12.9075i −0.258357 + 0.447487i
\(833\) 8.60516 6.25201i 0.298151 0.216619i
\(834\) −15.3384 + 3.26027i −0.531124 + 0.112894i
\(835\) 12.2702 + 37.7639i 0.424629 + 1.30687i
\(836\) −9.66453 −0.334255
\(837\) 0 0
\(838\) 8.13409 0.280987
\(839\) −7.12828 21.9386i −0.246096 0.757404i −0.995454 0.0952401i \(-0.969638\pi\)
0.749359 0.662164i \(-0.230362\pi\)
\(840\) −12.4046 + 2.63669i −0.428001 + 0.0909743i
\(841\) 15.3874 11.1796i 0.530600 0.385503i
\(842\) −5.12779 + 8.88160i −0.176715 + 0.306080i
\(843\) 3.59793 + 6.23179i 0.123919 + 0.214634i
\(844\) −28.6432 12.7528i −0.985939 0.438969i
\(845\) 11.4067 + 8.28743i 0.392401 + 0.285096i
\(846\) −13.7298 + 6.11289i −0.472039 + 0.210165i
\(847\) −5.38600 1.14483i −0.185065 0.0393368i
\(848\) −1.70338 16.2065i −0.0584942 0.556535i
\(849\) −9.15018 + 10.1623i −0.314033 + 0.348770i
\(850\) 1.64779 + 1.83006i 0.0565187 + 0.0627704i
\(851\) 0.145456 1.38392i 0.00498616 0.0474402i
\(852\) −2.81502 + 8.66374i −0.0964410 + 0.296815i
\(853\) 9.27697 28.5516i 0.317637 0.977587i −0.657018 0.753875i \(-0.728182\pi\)
0.974655 0.223712i \(-0.0718176\pi\)
\(854\) 0.573819 5.45952i 0.0196357 0.186821i
\(855\) 22.6354 + 25.1391i 0.774114 + 0.859740i
\(856\) 11.0767 12.3019i 0.378594 0.420472i
\(857\) 5.70594 + 54.2883i 0.194911 + 1.85445i 0.457071 + 0.889430i \(0.348898\pi\)
−0.262160 + 0.965024i \(0.584435\pi\)
\(858\) 6.94902 + 1.47706i 0.237236 + 0.0504260i
\(859\) −8.52923 + 3.79746i −0.291014 + 0.129568i −0.547051 0.837099i \(-0.684250\pi\)
0.256037 + 0.966667i \(0.417583\pi\)
\(860\) 37.9710 + 27.5876i 1.29480 + 0.940728i
\(861\) 19.8678 + 8.84571i 0.677093 + 0.301461i
\(862\) −5.33338 9.23768i −0.181656 0.314637i
\(863\) 6.65836 11.5326i 0.226653 0.392575i −0.730161 0.683275i \(-0.760555\pi\)
0.956814 + 0.290700i \(0.0938882\pi\)
\(864\) −21.5087 + 15.6270i −0.731741 + 0.531641i
\(865\) −55.3870 + 11.7729i −1.88321 + 0.400290i
\(866\) 1.50300 + 4.62577i 0.0510741 + 0.157190i
\(867\) −39.5520 −1.34326
\(868\) 0 0
\(869\) 8.38250 0.284357
\(870\) 2.95130 + 9.08317i 0.100058 + 0.307948i
\(871\) −18.0951 + 3.84624i −0.613130 + 0.130325i
\(872\) −0.696668 + 0.506159i −0.0235922 + 0.0171407i
\(873\) −9.16547 + 15.8751i −0.310204 + 0.537290i
\(874\) −0.164599 0.285094i −0.00556766 0.00964346i
\(875\) 3.40925 + 1.51790i 0.115254 + 0.0513142i
\(876\) −63.0749 45.8266i −2.13110 1.54834i
\(877\) −38.8860 + 17.3132i −1.31309 + 0.584624i −0.939366 0.342916i \(-0.888585\pi\)
−0.373722 + 0.927541i \(0.621919\pi\)
\(878\) −4.44133 0.944034i −0.149888 0.0318596i
\(879\) 3.19032 + 30.3538i 0.107607 + 1.02381i
\(880\) 15.8379 17.5898i 0.533897 0.592953i
\(881\) 3.86298 + 4.29027i 0.130147 + 0.144543i 0.804696 0.593687i \(-0.202328\pi\)
−0.674549 + 0.738230i \(0.735662\pi\)
\(882\) 1.15010 10.9425i 0.0387260 0.368453i
\(883\) −8.40436 + 25.8660i −0.282829 + 0.870459i 0.704212 + 0.709990i \(0.251301\pi\)
−0.987041 + 0.160469i \(0.948699\pi\)
\(884\) 3.04068 9.35826i 0.102269 0.314752i
\(885\) 10.8029 102.783i 0.363136 3.45501i
\(886\) 5.58686 + 6.20483i 0.187694 + 0.208455i
\(887\) −4.93262 + 5.47823i −0.165621 + 0.183941i −0.820242 0.572016i \(-0.806161\pi\)
0.654621 + 0.755957i \(0.272828\pi\)
\(888\) −1.29649 12.3353i −0.0435075 0.413946i
\(889\) −0.124695 0.0265048i −0.00418215 0.000888943i
\(890\) −2.15671 + 0.960227i −0.0722929 + 0.0321869i
\(891\) −7.34822 5.33880i −0.246175 0.178856i
\(892\) −10.7340 4.77907i −0.359400 0.160015i
\(893\) 8.43290 + 14.6062i 0.282196 + 0.488778i
\(894\) 6.07548 10.5230i 0.203194 0.351943i
\(895\) −0.190820 + 0.138639i −0.00637840 + 0.00463418i
\(896\) −10.1332 + 2.15388i −0.338526 + 0.0719560i
\(897\) −1.13617 3.49677i −0.0379356 0.116754i
\(898\) 6.82232 0.227664
\(899\) 0 0
\(900\) −38.7040 −1.29013
\(901\) 2.80645 + 8.63736i 0.0934963 + 0.287752i
\(902\) 5.80560 1.23402i 0.193305 0.0410883i
\(903\) 21.3082 15.4813i 0.709092 0.515186i
\(904\) −7.69738 + 13.3322i −0.256011 + 0.443424i
\(905\) 3.21533 + 5.56911i 0.106881 + 0.185123i
\(906\) 4.01478 + 1.78750i 0.133382 + 0.0593856i
\(907\) −13.3350 9.68848i −0.442783 0.321701i 0.343957 0.938985i \(-0.388233\pi\)
−0.786740 + 0.617285i \(0.788233\pi\)
\(908\) 13.4527 5.98953i 0.446444 0.198770i
\(909\) −93.0825 19.7853i −3.08735 0.656237i
\(910\) −0.339639 3.23144i −0.0112589 0.107121i
\(911\) −29.9818 + 33.2981i −0.993340 + 1.10322i 0.00131908 + 0.999999i \(0.499580\pi\)
−0.994659 + 0.103217i \(0.967087\pi\)
\(912\) 13.4275 + 14.9127i 0.444627 + 0.493809i
\(913\) 3.26671 31.0807i 0.108112 1.02862i
\(914\) −2.64350 + 8.13586i −0.0874393 + 0.269110i
\(915\) 38.3728 118.099i 1.26857 3.90425i
\(916\) −2.50538 + 23.8371i −0.0827802 + 0.787601i
\(917\) −4.18806 4.65132i −0.138302 0.153600i
\(918\) 2.94380 3.26943i 0.0971600 0.107907i
\(919\) 1.08258 + 10.3001i 0.0357111 + 0.339768i 0.997760 + 0.0668920i \(0.0213083\pi\)
−0.962049 + 0.272876i \(0.912025\pi\)
\(920\) 1.75206 + 0.372411i 0.0577636 + 0.0122780i
\(921\) 7.00040 3.11678i 0.230671 0.102701i
\(922\) −10.9015 7.92041i −0.359022 0.260845i
\(923\) −4.40478 1.96113i −0.144985 0.0645515i
\(924\) −7.14231 12.3708i −0.234965 0.406971i
\(925\) 6.04191 10.4649i 0.198657 0.344084i
\(926\) −1.87486 + 1.36216i −0.0616116 + 0.0447634i
\(927\) −42.4181 + 9.01625i −1.39319 + 0.296132i
\(928\) 3.78319 + 11.6435i 0.124189 + 0.382216i
\(929\) −44.0624 −1.44564 −0.722820 0.691037i \(-0.757154\pi\)
−0.722820 + 0.691037i \(0.757154\pi\)
\(930\) 0 0
\(931\) −12.3474 −0.404671
\(932\) −7.37447 22.6963i −0.241559 0.743441i
\(933\) −15.6017 + 3.31624i −0.510776 + 0.108569i
\(934\) −10.9181 + 7.93246i −0.357251 + 0.259558i
\(935\) −6.59563 + 11.4240i −0.215700 + 0.373604i
\(936\) −10.5136 18.2101i −0.343648 0.595216i
\(937\) −31.5785 14.0596i −1.03162 0.459308i −0.180113 0.983646i \(-0.557646\pi\)
−0.851511 + 0.524337i \(0.824313\pi\)
\(938\) −1.98062 1.43900i −0.0646694 0.0469851i
\(939\) 70.5073 31.3919i 2.30092 1.02444i
\(940\) −43.4516 9.23591i −1.41723 0.301242i
\(941\) −2.31521 22.0277i −0.0754736 0.718084i −0.965186 0.261563i \(-0.915762\pi\)
0.889713 0.456521i \(-0.150905\pi\)
\(942\) −5.92224 + 6.57731i −0.192957 + 0.214300i
\(943\) −2.05539 2.28274i −0.0669328 0.0743364i
\(944\) 4.11177 39.1208i 0.133827 1.27327i
\(945\) −6.82084 + 20.9924i −0.221882 + 0.682882i
\(946\) 2.22123 6.83625i 0.0722185 0.222266i
\(947\) −2.93543 + 27.9287i −0.0953885 + 0.907561i 0.837267 + 0.546794i \(0.184152\pi\)
−0.932656 + 0.360767i \(0.882515\pi\)
\(948\) −12.5249 13.9103i −0.406789 0.451785i
\(949\) 27.6124 30.6667i 0.896337 0.995483i
\(950\) −0.298814 2.84302i −0.00969480 0.0922398i
\(951\) −30.3956 6.46078i −0.985644 0.209505i
\(952\) 2.45751 1.09416i 0.0796485 0.0354618i
\(953\) 6.20254 + 4.50641i 0.200920 + 0.145977i 0.683696 0.729767i \(-0.260371\pi\)
−0.482776 + 0.875744i \(0.660371\pi\)
\(954\) 8.58234 + 3.82111i 0.277864 + 0.123713i
\(955\) 7.94104 + 13.7543i 0.256966 + 0.445078i
\(956\) 23.8546 41.3173i 0.771512 1.33630i
\(957\) −17.9792 + 13.0626i −0.581184 + 0.422255i
\(958\) −2.58679 + 0.549840i −0.0835754 + 0.0177645i
\(959\) 3.94768 + 12.1497i 0.127477 + 0.392334i
\(960\) −44.6168 −1.44000
\(961\) 0 0
\(962\) 3.17789 0.102459
\(963\) −20.1682 62.0714i −0.649912 2.00022i
\(964\) −4.33356 + 0.921126i −0.139574 + 0.0296675i
\(965\) 5.13233 3.72886i 0.165216 0.120036i
\(966\) 0.243285 0.421383i 0.00782758 0.0135578i
\(967\) −0.925182 1.60246i −0.0297518 0.0515317i 0.850766 0.525545i \(-0.176138\pi\)
−0.880518 + 0.474013i \(0.842805\pi\)
\(968\) 6.33280 + 2.81954i 0.203544 + 0.0906236i
\(969\) −9.04772 6.57355i −0.290654 0.211173i
\(970\) 3.25776 1.45045i 0.104600 0.0465711i
\(971\) −48.2926 10.2649i −1.54978 0.329416i −0.648011 0.761631i \(-0.724399\pi\)
−0.901771 + 0.432214i \(0.857732\pi\)
\(972\) −1.91688 18.2379i −0.0614841 0.584982i
\(973\) −11.1668 + 12.4020i −0.357992 + 0.397590i
\(974\) −5.88644 6.53755i −0.188614 0.209477i
\(975\) 3.33736 31.7529i 0.106881 1.01691i
\(976\) 14.6053 44.9506i 0.467505 1.43883i
\(977\) −11.0079 + 33.8790i −0.352175 + 1.08388i 0.605454 + 0.795880i \(0.292992\pi\)
−0.957629 + 0.288004i \(0.907008\pi\)
\(978\) −0.332447 + 3.16302i −0.0106305 + 0.101142i
\(979\) −3.67580 4.08239i −0.117479 0.130474i
\(980\) 21.7611 24.1682i 0.695133 0.772024i
\(981\) 0.354885 + 3.37651i 0.0113306 + 0.107804i
\(982\) −13.6504 2.90149i −0.435603 0.0925903i
\(983\) 5.83170 2.59644i 0.186002 0.0828136i −0.311622 0.950206i \(-0.600872\pi\)
0.497625 + 0.867392i \(0.334206\pi\)
\(984\) −22.1504 16.0932i −0.706127 0.513032i
\(985\) 15.9595 + 7.10565i 0.508513 + 0.226405i
\(986\) −1.01295 1.75448i −0.0322588 0.0558739i
\(987\) −12.4642 + 21.5887i −0.396740 + 0.687175i
\(988\) −9.24105 + 6.71402i −0.293997 + 0.213601i
\(989\) −3.63879 + 0.773449i −0.115707 + 0.0245943i
\(990\) 4.21668 + 12.9776i 0.134015 + 0.412455i
\(991\) 44.2919 1.40698 0.703489 0.710706i \(-0.251624\pi\)
0.703489 + 0.710706i \(0.251624\pi\)
\(992\) 0 0
\(993\) −56.8463 −1.80396
\(994\) −0.197179 0.606856i −0.00625415 0.0192483i
\(995\) 20.1483 4.28265i 0.638744 0.135769i
\(996\) −56.4576 + 41.0189i −1.78893 + 1.29973i
\(997\) −2.66158 + 4.60999i −0.0842931 + 0.146000i −0.905090 0.425221i \(-0.860197\pi\)
0.820797 + 0.571220i \(0.193530\pi\)
\(998\) −4.15641 7.19911i −0.131569 0.227884i
\(999\) −19.7216 8.78061i −0.623963 0.277806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.n.844.1 16
31.2 even 5 961.2.g.l.338.2 16
31.3 odd 30 961.2.a.i.1.4 8
31.4 even 5 961.2.g.j.732.2 16
31.5 even 3 961.2.g.m.547.1 16
31.6 odd 6 961.2.d.p.531.2 16
31.7 even 15 961.2.d.n.374.3 16
31.8 even 5 961.2.g.m.448.1 16
31.9 even 15 inner 961.2.g.n.846.1 16
31.10 even 15 961.2.g.j.235.2 16
31.11 odd 30 31.2.g.a.10.2 16
31.12 odd 30 961.2.d.o.388.3 16
31.13 odd 30 961.2.c.j.439.4 16
31.14 even 15 961.2.d.q.628.2 16
31.15 odd 10 961.2.c.j.521.4 16
31.16 even 5 961.2.c.i.521.4 16
31.17 odd 30 961.2.d.p.628.2 16
31.18 even 15 961.2.c.i.439.4 16
31.19 even 15 961.2.d.n.388.3 16
31.20 even 15 961.2.g.l.816.2 16
31.21 odd 30 961.2.g.k.235.2 16
31.22 odd 30 961.2.g.t.846.1 16
31.23 odd 10 961.2.g.s.448.1 16
31.24 odd 30 961.2.d.o.374.3 16
31.25 even 3 961.2.d.q.531.2 16
31.26 odd 6 961.2.g.s.547.1 16
31.27 odd 10 961.2.g.k.732.2 16
31.28 even 15 961.2.a.j.1.4 8
31.29 odd 10 31.2.g.a.28.2 yes 16
31.30 odd 2 961.2.g.t.844.1 16
93.11 even 30 279.2.y.c.10.1 16
93.29 even 10 279.2.y.c.28.1 16
93.59 odd 30 8649.2.a.be.1.5 8
93.65 even 30 8649.2.a.bf.1.5 8
124.11 even 30 496.2.bg.c.289.1 16
124.91 even 10 496.2.bg.c.369.1 16
155.29 odd 10 775.2.bl.a.276.1 16
155.42 even 60 775.2.ck.a.599.3 32
155.73 even 60 775.2.ck.a.599.2 32
155.104 odd 30 775.2.bl.a.351.1 16
155.122 even 20 775.2.ck.a.524.2 32
155.153 even 20 775.2.ck.a.524.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.2 16 31.11 odd 30
31.2.g.a.28.2 yes 16 31.29 odd 10
279.2.y.c.10.1 16 93.11 even 30
279.2.y.c.28.1 16 93.29 even 10
496.2.bg.c.289.1 16 124.11 even 30
496.2.bg.c.369.1 16 124.91 even 10
775.2.bl.a.276.1 16 155.29 odd 10
775.2.bl.a.351.1 16 155.104 odd 30
775.2.ck.a.524.2 32 155.122 even 20
775.2.ck.a.524.3 32 155.153 even 20
775.2.ck.a.599.2 32 155.73 even 60
775.2.ck.a.599.3 32 155.42 even 60
961.2.a.i.1.4 8 31.3 odd 30
961.2.a.j.1.4 8 31.28 even 15
961.2.c.i.439.4 16 31.18 even 15
961.2.c.i.521.4 16 31.16 even 5
961.2.c.j.439.4 16 31.13 odd 30
961.2.c.j.521.4 16 31.15 odd 10
961.2.d.n.374.3 16 31.7 even 15
961.2.d.n.388.3 16 31.19 even 15
961.2.d.o.374.3 16 31.24 odd 30
961.2.d.o.388.3 16 31.12 odd 30
961.2.d.p.531.2 16 31.6 odd 6
961.2.d.p.628.2 16 31.17 odd 30
961.2.d.q.531.2 16 31.25 even 3
961.2.d.q.628.2 16 31.14 even 15
961.2.g.j.235.2 16 31.10 even 15
961.2.g.j.732.2 16 31.4 even 5
961.2.g.k.235.2 16 31.21 odd 30
961.2.g.k.732.2 16 31.27 odd 10
961.2.g.l.338.2 16 31.2 even 5
961.2.g.l.816.2 16 31.20 even 15
961.2.g.m.448.1 16 31.8 even 5
961.2.g.m.547.1 16 31.5 even 3
961.2.g.n.844.1 16 1.1 even 1 trivial
961.2.g.n.846.1 16 31.9 even 15 inner
961.2.g.s.448.1 16 31.23 odd 10
961.2.g.s.547.1 16 31.26 odd 6
961.2.g.t.844.1 16 31.30 odd 2
961.2.g.t.846.1 16 31.22 odd 30
8649.2.a.be.1.5 8 93.59 odd 30
8649.2.a.bf.1.5 8 93.65 even 30