Properties

Label 496.2.bg.c.289.1
Level $496$
Weight $2$
Character 496.289
Analytic conductor $3.961$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [496,2,Mod(49,496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(496, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 0, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("496.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 496 = 2^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 496.bg (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.96057994026\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 289.1
Root \(-1.03739i\) of defining polynomial
Character \(\chi\) \(=\) 496.289
Dual form 496.2.bg.c.369.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.302431 - 2.87744i) q^{3} +(-1.48661 - 2.57489i) q^{5} +(-1.05848 - 0.224987i) q^{7} +(-5.25377 + 1.11672i) q^{9} +(1.62690 - 1.80686i) q^{11} +(2.62521 + 1.16882i) q^{13} +(-6.95951 + 5.05638i) q^{15} +(-1.22101 - 1.35606i) q^{17} +(-1.93514 + 0.861580i) q^{19} +(-0.327269 + 3.11375i) q^{21} +(0.136652 - 0.420572i) q^{23} +(-1.92005 + 3.32562i) q^{25} +(2.11998 + 6.52462i) q^{27} +(2.55579 + 1.85689i) q^{29} +(-1.15354 + 5.44696i) q^{31} +(-5.69116 - 4.13487i) q^{33} +(0.994234 + 3.05994i) q^{35} +(-1.57338 + 2.72517i) q^{37} +(2.56926 - 7.90738i) q^{39} +(0.726079 - 6.90818i) q^{41} +(7.68509 - 3.42162i) q^{43} +(10.6858 + 11.8677i) q^{45} +(-6.44144 + 4.67998i) q^{47} +(-5.32506 - 2.37087i) q^{49} +(-3.53273 + 3.92349i) q^{51} +(4.86824 - 1.03478i) q^{53} +(-7.07105 - 1.50300i) q^{55} +(3.06439 + 5.30768i) q^{57} +(-1.25580 - 11.9481i) q^{59} -14.4351 q^{61} +5.81225 q^{63} +(-0.893094 - 8.49722i) q^{65} +(-3.21879 - 5.57511i) q^{67} +(-1.25150 - 0.266015i) q^{69} +(1.64121 - 0.348850i) q^{71} +(9.60883 - 10.6717i) q^{73} +(10.1500 + 4.51905i) q^{75} +(-2.12856 + 1.54649i) q^{77} +(2.30692 + 2.56210i) q^{79} +(3.41274 - 1.51945i) q^{81} +(1.34357 - 12.7832i) q^{83} +(-1.67655 + 5.15991i) q^{85} +(4.57015 - 7.91573i) q^{87} +(0.698188 + 2.14880i) q^{89} +(-2.51576 - 1.82781i) q^{91} +(16.0222 + 1.67190i) q^{93} +(5.09528 + 3.70194i) q^{95} +(1.05463 + 3.24582i) q^{97} +(-6.52961 + 11.3096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{3} - 3 q^{5} - 2 q^{7} - 10 q^{9} + 7 q^{11} - 7 q^{13} - 14 q^{15} - 6 q^{17} - 16 q^{19} + 9 q^{21} - q^{23} - 13 q^{25} - 9 q^{27} - 14 q^{29} - 15 q^{31} - 13 q^{33} + 9 q^{35} - 8 q^{37}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/496\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\) \(373\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.302431 2.87744i −0.174609 1.66129i −0.634206 0.773164i \(-0.718673\pi\)
0.459597 0.888128i \(-0.347994\pi\)
\(4\) 0 0
\(5\) −1.48661 2.57489i −0.664834 1.15153i −0.979330 0.202268i \(-0.935169\pi\)
0.314496 0.949259i \(-0.398165\pi\)
\(6\) 0 0
\(7\) −1.05848 0.224987i −0.400067 0.0850369i 0.00348400 0.999994i \(-0.498891\pi\)
−0.403551 + 0.914957i \(0.632224\pi\)
\(8\) 0 0
\(9\) −5.25377 + 1.11672i −1.75126 + 0.372241i
\(10\) 0 0
\(11\) 1.62690 1.80686i 0.490530 0.544789i −0.446158 0.894954i \(-0.647208\pi\)
0.936688 + 0.350165i \(0.113875\pi\)
\(12\) 0 0
\(13\) 2.62521 + 1.16882i 0.728103 + 0.324172i 0.737097 0.675787i \(-0.236196\pi\)
−0.00899389 + 0.999960i \(0.502863\pi\)
\(14\) 0 0
\(15\) −6.95951 + 5.05638i −1.79694 + 1.30555i
\(16\) 0 0
\(17\) −1.22101 1.35606i −0.296137 0.328894i 0.576653 0.816989i \(-0.304359\pi\)
−0.872790 + 0.488095i \(0.837692\pi\)
\(18\) 0 0
\(19\) −1.93514 + 0.861580i −0.443951 + 0.197660i −0.616523 0.787337i \(-0.711459\pi\)
0.172571 + 0.984997i \(0.444792\pi\)
\(20\) 0 0
\(21\) −0.327269 + 3.11375i −0.0714159 + 0.679477i
\(22\) 0 0
\(23\) 0.136652 0.420572i 0.0284939 0.0876953i −0.935798 0.352536i \(-0.885319\pi\)
0.964292 + 0.264841i \(0.0853194\pi\)
\(24\) 0 0
\(25\) −1.92005 + 3.32562i −0.384010 + 0.665124i
\(26\) 0 0
\(27\) 2.11998 + 6.52462i 0.407990 + 1.25566i
\(28\) 0 0
\(29\) 2.55579 + 1.85689i 0.474599 + 0.344816i 0.799231 0.601024i \(-0.205240\pi\)
−0.324632 + 0.945840i \(0.605240\pi\)
\(30\) 0 0
\(31\) −1.15354 + 5.44696i −0.207181 + 0.978303i
\(32\) 0 0
\(33\) −5.69116 4.13487i −0.990704 0.719789i
\(34\) 0 0
\(35\) 0.994234 + 3.05994i 0.168056 + 0.517224i
\(36\) 0 0
\(37\) −1.57338 + 2.72517i −0.258661 + 0.448015i −0.965884 0.258977i \(-0.916615\pi\)
0.707222 + 0.706991i \(0.249948\pi\)
\(38\) 0 0
\(39\) 2.56926 7.90738i 0.411412 1.26619i
\(40\) 0 0
\(41\) 0.726079 6.90818i 0.113395 1.07888i −0.778814 0.627254i \(-0.784179\pi\)
0.892209 0.451623i \(-0.149155\pi\)
\(42\) 0 0
\(43\) 7.68509 3.42162i 1.17197 0.521793i 0.273944 0.961746i \(-0.411672\pi\)
0.898021 + 0.439953i \(0.145005\pi\)
\(44\) 0 0
\(45\) 10.6858 + 11.8677i 1.59294 + 1.76914i
\(46\) 0 0
\(47\) −6.44144 + 4.67998i −0.939580 + 0.682645i −0.948320 0.317317i \(-0.897218\pi\)
0.00873953 + 0.999962i \(0.497218\pi\)
\(48\) 0 0
\(49\) −5.32506 2.37087i −0.760723 0.338696i
\(50\) 0 0
\(51\) −3.53273 + 3.92349i −0.494681 + 0.549399i
\(52\) 0 0
\(53\) 4.86824 1.03478i 0.668704 0.142137i 0.138964 0.990297i \(-0.455623\pi\)
0.529740 + 0.848160i \(0.322289\pi\)
\(54\) 0 0
\(55\) −7.07105 1.50300i −0.953460 0.202664i
\(56\) 0 0
\(57\) 3.06439 + 5.30768i 0.405889 + 0.703020i
\(58\) 0 0
\(59\) −1.25580 11.9481i −0.163491 1.55551i −0.701559 0.712612i \(-0.747512\pi\)
0.538068 0.842902i \(-0.319154\pi\)
\(60\) 0 0
\(61\) −14.4351 −1.84823 −0.924115 0.382115i \(-0.875196\pi\)
−0.924115 + 0.382115i \(0.875196\pi\)
\(62\) 0 0
\(63\) 5.81225 0.732274
\(64\) 0 0
\(65\) −0.893094 8.49722i −0.110775 1.05395i
\(66\) 0 0
\(67\) −3.21879 5.57511i −0.393238 0.681108i 0.599636 0.800273i \(-0.295312\pi\)
−0.992875 + 0.119164i \(0.961979\pi\)
\(68\) 0 0
\(69\) −1.25150 0.266015i −0.150663 0.0320244i
\(70\) 0 0
\(71\) 1.64121 0.348850i 0.194776 0.0414009i −0.109491 0.993988i \(-0.534922\pi\)
0.304266 + 0.952587i \(0.401589\pi\)
\(72\) 0 0
\(73\) 9.60883 10.6717i 1.12463 1.24903i 0.159514 0.987196i \(-0.449007\pi\)
0.965114 0.261830i \(-0.0843261\pi\)
\(74\) 0 0
\(75\) 10.1500 + 4.51905i 1.17202 + 0.521815i
\(76\) 0 0
\(77\) −2.12856 + 1.54649i −0.242572 + 0.176239i
\(78\) 0 0
\(79\) 2.30692 + 2.56210i 0.259549 + 0.288259i 0.858809 0.512296i \(-0.171205\pi\)
−0.599260 + 0.800555i \(0.704538\pi\)
\(80\) 0 0
\(81\) 3.41274 1.51945i 0.379194 0.168828i
\(82\) 0 0
\(83\) 1.34357 12.7832i 0.147476 1.40314i −0.631155 0.775657i \(-0.717419\pi\)
0.778631 0.627482i \(-0.215914\pi\)
\(84\) 0 0
\(85\) −1.67655 + 5.15991i −0.181848 + 0.559670i
\(86\) 0 0
\(87\) 4.57015 7.91573i 0.489972 0.848656i
\(88\) 0 0
\(89\) 0.698188 + 2.14880i 0.0740078 + 0.227773i 0.981217 0.192907i \(-0.0617916\pi\)
−0.907209 + 0.420680i \(0.861792\pi\)
\(90\) 0 0
\(91\) −2.51576 1.82781i −0.263724 0.191606i
\(92\) 0 0
\(93\) 16.0222 + 1.67190i 1.66142 + 0.173368i
\(94\) 0 0
\(95\) 5.09528 + 3.70194i 0.522765 + 0.379811i
\(96\) 0 0
\(97\) 1.05463 + 3.24582i 0.107082 + 0.329563i 0.990213 0.139562i \(-0.0445693\pi\)
−0.883132 + 0.469125i \(0.844569\pi\)
\(98\) 0 0
\(99\) −6.52961 + 11.3096i −0.656251 + 1.13666i
\(100\) 0 0
\(101\) 5.47495 16.8502i 0.544778 1.67665i −0.176741 0.984257i \(-0.556555\pi\)
0.721518 0.692395i \(-0.243445\pi\)
\(102\) 0 0
\(103\) 0.843947 8.02962i 0.0831566 0.791182i −0.870881 0.491494i \(-0.836451\pi\)
0.954037 0.299688i \(-0.0968824\pi\)
\(104\) 0 0
\(105\) 8.50411 3.78627i 0.829916 0.369502i
\(106\) 0 0
\(107\) 8.13074 + 9.03010i 0.786028 + 0.872972i 0.994466 0.105063i \(-0.0335045\pi\)
−0.208438 + 0.978036i \(0.566838\pi\)
\(108\) 0 0
\(109\) 0.511381 0.371540i 0.0489815 0.0355871i −0.563025 0.826440i \(-0.690363\pi\)
0.612007 + 0.790853i \(0.290363\pi\)
\(110\) 0 0
\(111\) 8.31735 + 3.70312i 0.789448 + 0.351485i
\(112\) 0 0
\(113\) −7.56140 + 8.39779i −0.711317 + 0.789998i −0.985135 0.171784i \(-0.945047\pi\)
0.273818 + 0.961782i \(0.411714\pi\)
\(114\) 0 0
\(115\) −1.28608 + 0.273364i −0.119927 + 0.0254913i
\(116\) 0 0
\(117\) −15.0975 3.20907i −1.39576 0.296679i
\(118\) 0 0
\(119\) 0.987313 + 1.71008i 0.0905068 + 0.156762i
\(120\) 0 0
\(121\) 0.531887 + 5.06056i 0.0483533 + 0.460051i
\(122\) 0 0
\(123\) −20.0975 −1.81213
\(124\) 0 0
\(125\) −3.44866 −0.308458
\(126\) 0 0
\(127\) 0.0123141 + 0.117161i 0.00109270 + 0.0103963i 0.995055 0.0993289i \(-0.0316696\pi\)
−0.993962 + 0.109725i \(0.965003\pi\)
\(128\) 0 0
\(129\) −12.1697 21.0786i −1.07149 1.85587i
\(130\) 0 0
\(131\) 5.65756 + 1.20255i 0.494303 + 0.105067i 0.448317 0.893875i \(-0.352024\pi\)
0.0459863 + 0.998942i \(0.485357\pi\)
\(132\) 0 0
\(133\) 2.24215 0.476583i 0.194419 0.0413250i
\(134\) 0 0
\(135\) 13.6486 15.1583i 1.17469 1.30462i
\(136\) 0 0
\(137\) 10.7848 + 4.80170i 0.921407 + 0.410237i 0.811931 0.583753i \(-0.198416\pi\)
0.109475 + 0.993990i \(0.465083\pi\)
\(138\) 0 0
\(139\) −12.4767 + 9.06482i −1.05826 + 0.768868i −0.973765 0.227556i \(-0.926927\pi\)
−0.0844915 + 0.996424i \(0.526927\pi\)
\(140\) 0 0
\(141\) 15.4145 + 17.1195i 1.29813 + 1.44172i
\(142\) 0 0
\(143\) 6.38286 2.84183i 0.533762 0.237646i
\(144\) 0 0
\(145\) 0.981819 9.34138i 0.0815356 0.775759i
\(146\) 0 0
\(147\) −5.21157 + 16.0396i −0.429843 + 1.32292i
\(148\) 0 0
\(149\) 5.97511 10.3492i 0.489500 0.847840i −0.510427 0.859921i \(-0.670512\pi\)
0.999927 + 0.0120817i \(0.00384583\pi\)
\(150\) 0 0
\(151\) 1.33561 + 4.11059i 0.108691 + 0.334515i 0.990579 0.136943i \(-0.0437278\pi\)
−0.881888 + 0.471458i \(0.843728\pi\)
\(152\) 0 0
\(153\) 7.92923 + 5.76092i 0.641040 + 0.465743i
\(154\) 0 0
\(155\) 15.7402 5.12730i 1.26428 0.411834i
\(156\) 0 0
\(157\) 7.04204 + 5.11634i 0.562016 + 0.408328i 0.832196 0.554481i \(-0.187083\pi\)
−0.270180 + 0.962810i \(0.587083\pi\)
\(158\) 0 0
\(159\) −4.44982 13.6951i −0.352893 1.08609i
\(160\) 0 0
\(161\) −0.239267 + 0.414422i −0.0188568 + 0.0326610i
\(162\) 0 0
\(163\) −0.966575 + 2.97481i −0.0757080 + 0.233005i −0.981748 0.190187i \(-0.939091\pi\)
0.906040 + 0.423192i \(0.139091\pi\)
\(164\) 0 0
\(165\) −2.18628 + 20.8011i −0.170202 + 1.61936i
\(166\) 0 0
\(167\) 12.2003 5.43194i 0.944090 0.420336i 0.123815 0.992305i \(-0.460487\pi\)
0.820275 + 0.571969i \(0.193820\pi\)
\(168\) 0 0
\(169\) −3.17310 3.52408i −0.244085 0.271083i
\(170\) 0 0
\(171\) 9.20462 6.68755i 0.703895 0.511410i
\(172\) 0 0
\(173\) 17.3982 + 7.74619i 1.32276 + 0.588932i 0.941960 0.335724i \(-0.108981\pi\)
0.380803 + 0.924656i \(0.375648\pi\)
\(174\) 0 0
\(175\) 2.78055 3.08811i 0.210190 0.233439i
\(176\) 0 0
\(177\) −34.0002 + 7.22697i −2.55561 + 0.543213i
\(178\) 0 0
\(179\) −0.0775964 0.0164936i −0.00579983 0.00123279i 0.205011 0.978760i \(-0.434277\pi\)
−0.210811 + 0.977527i \(0.567610\pi\)
\(180\) 0 0
\(181\) −1.08143 1.87308i −0.0803817 0.139225i 0.823032 0.567995i \(-0.192281\pi\)
−0.903414 + 0.428769i \(0.858947\pi\)
\(182\) 0 0
\(183\) 4.36564 + 41.5363i 0.322717 + 3.07045i
\(184\) 0 0
\(185\) 9.35601 0.687868
\(186\) 0 0
\(187\) −4.43668 −0.324442
\(188\) 0 0
\(189\) −0.776000 7.38314i −0.0564457 0.537045i
\(190\) 0 0
\(191\) −2.67085 4.62604i −0.193256 0.334729i 0.753072 0.657939i \(-0.228571\pi\)
−0.946327 + 0.323210i \(0.895238\pi\)
\(192\) 0 0
\(193\) 2.08705 + 0.443616i 0.150229 + 0.0319322i 0.282412 0.959293i \(-0.408865\pi\)
−0.132183 + 0.991225i \(0.542199\pi\)
\(194\) 0 0
\(195\) −24.1802 + 5.13965i −1.73158 + 0.368058i
\(196\) 0 0
\(197\) −3.93163 + 4.36652i −0.280117 + 0.311102i −0.866742 0.498758i \(-0.833790\pi\)
0.586624 + 0.809859i \(0.300456\pi\)
\(198\) 0 0
\(199\) −6.32901 2.81786i −0.448652 0.199753i 0.169958 0.985451i \(-0.445637\pi\)
−0.618609 + 0.785699i \(0.712304\pi\)
\(200\) 0 0
\(201\) −15.0686 + 10.9480i −1.06286 + 0.772211i
\(202\) 0 0
\(203\) −2.28748 2.54050i −0.160549 0.178308i
\(204\) 0 0
\(205\) −18.8672 + 8.40023i −1.31774 + 0.586698i
\(206\) 0 0
\(207\) −0.248276 + 2.36219i −0.0172564 + 0.164184i
\(208\) 0 0
\(209\) −1.59153 + 4.89823i −0.110089 + 0.338818i
\(210\) 0 0
\(211\) 8.35437 14.4702i 0.575139 0.996170i −0.420888 0.907113i \(-0.638281\pi\)
0.996027 0.0890568i \(-0.0283853\pi\)
\(212\) 0 0
\(213\) −1.50015 4.61698i −0.102788 0.316350i
\(214\) 0 0
\(215\) −20.2351 14.7016i −1.38002 1.00264i
\(216\) 0 0
\(217\) 2.44649 5.50596i 0.166078 0.373769i
\(218\) 0 0
\(219\) −33.6132 24.4214i −2.27137 1.65024i
\(220\) 0 0
\(221\) −1.62040 4.98709i −0.109000 0.335468i
\(222\) 0 0
\(223\) −3.13078 + 5.42267i −0.209653 + 0.363129i −0.951605 0.307323i \(-0.900567\pi\)
0.741952 + 0.670453i \(0.233900\pi\)
\(224\) 0 0
\(225\) 6.37369 19.6162i 0.424912 1.30775i
\(226\) 0 0
\(227\) −0.820289 + 7.80452i −0.0544445 + 0.518004i 0.932982 + 0.359924i \(0.117197\pi\)
−0.987426 + 0.158081i \(0.949469\pi\)
\(228\) 0 0
\(229\) 11.6687 5.19524i 0.771089 0.343311i 0.0168049 0.999859i \(-0.494651\pi\)
0.754285 + 0.656548i \(0.227984\pi\)
\(230\) 0 0
\(231\) 5.09368 + 5.65711i 0.335140 + 0.372210i
\(232\) 0 0
\(233\) −10.2887 + 7.47514i −0.674032 + 0.489713i −0.871373 0.490622i \(-0.836770\pi\)
0.197340 + 0.980335i \(0.436770\pi\)
\(234\) 0 0
\(235\) 21.6264 + 9.62868i 1.41075 + 0.628106i
\(236\) 0 0
\(237\) 6.67460 7.41290i 0.433562 0.481520i
\(238\) 0 0
\(239\) −24.8690 + 5.28607i −1.60864 + 0.341928i −0.922638 0.385668i \(-0.873971\pi\)
−0.686006 + 0.727596i \(0.740638\pi\)
\(240\) 0 0
\(241\) −2.30939 0.490876i −0.148761 0.0316201i 0.132929 0.991126i \(-0.457562\pi\)
−0.281690 + 0.959505i \(0.590895\pi\)
\(242\) 0 0
\(243\) 4.88634 + 8.46339i 0.313459 + 0.542927i
\(244\) 0 0
\(245\) 1.81158 + 17.2360i 0.115738 + 1.10117i
\(246\) 0 0
\(247\) −6.08718 −0.387318
\(248\) 0 0
\(249\) −37.1893 −2.35677
\(250\) 0 0
\(251\) 0.246336 + 2.34373i 0.0155486 + 0.147935i 0.999542 0.0302716i \(-0.00963722\pi\)
−0.983993 + 0.178206i \(0.942971\pi\)
\(252\) 0 0
\(253\) −0.537595 0.931142i −0.0337983 0.0585404i
\(254\) 0 0
\(255\) 15.3544 + 3.26367i 0.961528 + 0.204379i
\(256\) 0 0
\(257\) 25.4455 5.40862i 1.58725 0.337380i 0.672089 0.740470i \(-0.265397\pi\)
0.915160 + 0.403090i \(0.132064\pi\)
\(258\) 0 0
\(259\) 2.27851 2.53054i 0.141580 0.157240i
\(260\) 0 0
\(261\) −15.5012 6.90157i −0.959499 0.427196i
\(262\) 0 0
\(263\) 18.5552 13.4812i 1.14417 0.831285i 0.156471 0.987683i \(-0.449988\pi\)
0.987694 + 0.156398i \(0.0499881\pi\)
\(264\) 0 0
\(265\) −9.90163 10.9969i −0.608253 0.675533i
\(266\) 0 0
\(267\) 5.97190 2.65886i 0.365474 0.162720i
\(268\) 0 0
\(269\) 1.78193 16.9539i 0.108646 1.03370i −0.795347 0.606154i \(-0.792712\pi\)
0.903994 0.427546i \(-0.140622\pi\)
\(270\) 0 0
\(271\) −2.23929 + 6.89184i −0.136027 + 0.418649i −0.995748 0.0921146i \(-0.970637\pi\)
0.859721 + 0.510764i \(0.170637\pi\)
\(272\) 0 0
\(273\) −4.49857 + 7.79175i −0.272266 + 0.471578i
\(274\) 0 0
\(275\) 2.88520 + 8.87972i 0.173984 + 0.535467i
\(276\) 0 0
\(277\) −12.2188 8.87748i −0.734157 0.533396i 0.156719 0.987643i \(-0.449908\pi\)
−0.890876 + 0.454247i \(0.849908\pi\)
\(278\) 0 0
\(279\) −0.0223278 29.9052i −0.00133673 1.79038i
\(280\) 0 0
\(281\) 2.01209 + 1.46187i 0.120031 + 0.0872078i 0.646181 0.763184i \(-0.276365\pi\)
−0.526150 + 0.850392i \(0.676365\pi\)
\(282\) 0 0
\(283\) 1.46052 + 4.49503i 0.0868192 + 0.267202i 0.985035 0.172352i \(-0.0551366\pi\)
−0.898216 + 0.439554i \(0.855137\pi\)
\(284\) 0 0
\(285\) 9.11114 15.7810i 0.539697 0.934783i
\(286\) 0 0
\(287\) −2.32279 + 7.14881i −0.137110 + 0.421981i
\(288\) 0 0
\(289\) 1.42893 13.5953i 0.0840546 0.799726i
\(290\) 0 0
\(291\) 9.02071 4.01628i 0.528804 0.235439i
\(292\) 0 0
\(293\) −7.05858 7.83935i −0.412367 0.457980i 0.500802 0.865562i \(-0.333039\pi\)
−0.913169 + 0.407582i \(0.866372\pi\)
\(294\) 0 0
\(295\) −28.8982 + 20.9958i −1.68252 + 1.22242i
\(296\) 0 0
\(297\) 15.2381 + 6.78443i 0.884203 + 0.393673i
\(298\) 0 0
\(299\) 0.850314 0.944369i 0.0491749 0.0546143i
\(300\) 0 0
\(301\) −8.90432 + 1.89267i −0.513237 + 0.109092i
\(302\) 0 0
\(303\) −50.1411 10.6578i −2.88053 0.612276i
\(304\) 0 0
\(305\) 21.4595 + 37.1689i 1.22877 + 2.12829i
\(306\) 0 0
\(307\) 0.276844 + 2.63399i 0.0158003 + 0.150330i 0.999578 0.0290645i \(-0.00925283\pi\)
−0.983777 + 0.179394i \(0.942586\pi\)
\(308\) 0 0
\(309\) −23.3600 −1.32890
\(310\) 0 0
\(311\) −5.51283 −0.312604 −0.156302 0.987709i \(-0.549957\pi\)
−0.156302 + 0.987709i \(0.549957\pi\)
\(312\) 0 0
\(313\) 2.78834 + 26.5293i 0.157607 + 1.49953i 0.732201 + 0.681088i \(0.238493\pi\)
−0.574595 + 0.818438i \(0.694840\pi\)
\(314\) 0 0
\(315\) −8.64057 14.9659i −0.486841 0.843234i
\(316\) 0 0
\(317\) −10.5055 2.23302i −0.590050 0.125419i −0.0967957 0.995304i \(-0.530859\pi\)
−0.493254 + 0.869885i \(0.664193\pi\)
\(318\) 0 0
\(319\) 7.51318 1.59698i 0.420657 0.0894135i
\(320\) 0 0
\(321\) 23.5246 26.1267i 1.31301 1.45825i
\(322\) 0 0
\(323\) 3.53117 + 1.57218i 0.196480 + 0.0874784i
\(324\) 0 0
\(325\) −8.92758 + 6.48627i −0.495213 + 0.359793i
\(326\) 0 0
\(327\) −1.22374 1.35911i −0.0676732 0.0751587i
\(328\) 0 0
\(329\) 7.87106 3.50442i 0.433945 0.193205i
\(330\) 0 0
\(331\) 2.05373 19.5400i 0.112883 1.07401i −0.780635 0.624987i \(-0.785104\pi\)
0.893518 0.449027i \(-0.148229\pi\)
\(332\) 0 0
\(333\) 5.22289 16.0744i 0.286213 0.880872i
\(334\) 0 0
\(335\) −9.57021 + 16.5761i −0.522876 + 0.905649i
\(336\) 0 0
\(337\) 5.92655 + 18.2401i 0.322840 + 0.993599i 0.972406 + 0.233294i \(0.0749505\pi\)
−0.649566 + 0.760305i \(0.725050\pi\)
\(338\) 0 0
\(339\) 26.4510 + 19.2178i 1.43662 + 1.04376i
\(340\) 0 0
\(341\) 7.96520 + 10.9460i 0.431340 + 0.592757i
\(342\) 0 0
\(343\) 11.2313 + 8.15999i 0.606431 + 0.440598i
\(344\) 0 0
\(345\) 1.17554 + 3.61794i 0.0632889 + 0.194783i
\(346\) 0 0
\(347\) 5.32998 9.23180i 0.286128 0.495589i −0.686754 0.726890i \(-0.740965\pi\)
0.972882 + 0.231301i \(0.0742983\pi\)
\(348\) 0 0
\(349\) −5.77910 + 17.7862i −0.309348 + 0.952075i 0.668671 + 0.743559i \(0.266864\pi\)
−0.978019 + 0.208517i \(0.933136\pi\)
\(350\) 0 0
\(351\) −2.06072 + 19.6064i −0.109993 + 1.04651i
\(352\) 0 0
\(353\) −11.5675 + 5.15020i −0.615678 + 0.274117i −0.690787 0.723058i \(-0.742736\pi\)
0.0751097 + 0.997175i \(0.476069\pi\)
\(354\) 0 0
\(355\) −3.33810 3.70733i −0.177168 0.196765i
\(356\) 0 0
\(357\) 4.62205 3.35812i 0.244625 0.177730i
\(358\) 0 0
\(359\) 20.7175 + 9.22402i 1.09343 + 0.486825i 0.872574 0.488482i \(-0.162449\pi\)
0.220853 + 0.975307i \(0.429116\pi\)
\(360\) 0 0
\(361\) −9.71104 + 10.7852i −0.511107 + 0.567642i
\(362\) 0 0
\(363\) 14.4006 3.06095i 0.755837 0.160658i
\(364\) 0 0
\(365\) −41.7631 8.87701i −2.18598 0.464644i
\(366\) 0 0
\(367\) 4.35984 + 7.55147i 0.227582 + 0.394183i 0.957091 0.289788i \(-0.0935847\pi\)
−0.729509 + 0.683971i \(0.760251\pi\)
\(368\) 0 0
\(369\) 3.89987 + 37.1048i 0.203019 + 1.93160i
\(370\) 0 0
\(371\) −5.38574 −0.279614
\(372\) 0 0
\(373\) 25.4134 1.31586 0.657928 0.753081i \(-0.271433\pi\)
0.657928 + 0.753081i \(0.271433\pi\)
\(374\) 0 0
\(375\) 1.04298 + 9.92333i 0.0538594 + 0.512438i
\(376\) 0 0
\(377\) 4.53913 + 7.86200i 0.233777 + 0.404914i
\(378\) 0 0
\(379\) 21.6150 + 4.59441i 1.11029 + 0.235999i 0.726326 0.687350i \(-0.241226\pi\)
0.383961 + 0.923349i \(0.374560\pi\)
\(380\) 0 0
\(381\) 0.333399 0.0708662i 0.0170806 0.00363059i
\(382\) 0 0
\(383\) 17.8274 19.7993i 0.910938 1.01170i −0.0889398 0.996037i \(-0.528348\pi\)
0.999877 0.0156617i \(-0.00498547\pi\)
\(384\) 0 0
\(385\) 7.14640 + 3.18178i 0.364214 + 0.162159i
\(386\) 0 0
\(387\) −36.5547 + 26.5585i −1.85818 + 1.35005i
\(388\) 0 0
\(389\) −8.66862 9.62748i −0.439517 0.488133i 0.482165 0.876081i \(-0.339851\pi\)
−0.921681 + 0.387948i \(0.873184\pi\)
\(390\) 0 0
\(391\) −0.737176 + 0.328212i −0.0372806 + 0.0165984i
\(392\) 0 0
\(393\) 1.74925 16.6430i 0.0882379 0.839528i
\(394\) 0 0
\(395\) 3.16762 9.74894i 0.159380 0.490522i
\(396\) 0 0
\(397\) 1.46363 2.53508i 0.0734574 0.127232i −0.826957 0.562265i \(-0.809930\pi\)
0.900414 + 0.435033i \(0.143263\pi\)
\(398\) 0 0
\(399\) −2.04944 6.30752i −0.102600 0.315771i
\(400\) 0 0
\(401\) 9.93025 + 7.21475i 0.495893 + 0.360287i 0.807446 0.589942i \(-0.200849\pi\)
−0.311553 + 0.950229i \(0.600849\pi\)
\(402\) 0 0
\(403\) −9.39479 + 12.9511i −0.467988 + 0.645142i
\(404\) 0 0
\(405\) −8.98586 6.52861i −0.446511 0.324409i
\(406\) 0 0
\(407\) 2.36426 + 7.27645i 0.117192 + 0.360680i
\(408\) 0 0
\(409\) 8.59861 14.8932i 0.425174 0.736423i −0.571263 0.820767i \(-0.693546\pi\)
0.996437 + 0.0843442i \(0.0268795\pi\)
\(410\) 0 0
\(411\) 10.5549 32.4848i 0.520637 1.60236i
\(412\) 0 0
\(413\) −1.35893 + 12.9294i −0.0668687 + 0.636213i
\(414\) 0 0
\(415\) −34.9127 + 15.5442i −1.71380 + 0.763032i
\(416\) 0 0
\(417\) 29.8568 + 33.1594i 1.46210 + 1.62382i
\(418\) 0 0
\(419\) 18.7251 13.6046i 0.914782 0.664628i −0.0274378 0.999624i \(-0.508735\pi\)
0.942220 + 0.334996i \(0.108735\pi\)
\(420\) 0 0
\(421\) 26.6593 + 11.8695i 1.29929 + 0.578483i 0.935609 0.353038i \(-0.114851\pi\)
0.363686 + 0.931522i \(0.381518\pi\)
\(422\) 0 0
\(423\) 28.6156 31.7808i 1.39134 1.54524i
\(424\) 0 0
\(425\) 6.85415 1.45689i 0.332475 0.0706697i
\(426\) 0 0
\(427\) 15.2793 + 3.24771i 0.739416 + 0.157168i
\(428\) 0 0
\(429\) −10.1076 17.5069i −0.487999 0.845239i
\(430\) 0 0
\(431\) 3.17267 + 30.1859i 0.152822 + 1.45401i 0.755042 + 0.655676i \(0.227616\pi\)
−0.602220 + 0.798330i \(0.705717\pi\)
\(432\) 0 0
\(433\) −13.8400 −0.665107 −0.332553 0.943084i \(-0.607910\pi\)
−0.332553 + 0.943084i \(0.607910\pi\)
\(434\) 0 0
\(435\) −27.1762 −1.30300
\(436\) 0 0
\(437\) 0.0979154 + 0.931602i 0.00468393 + 0.0445646i
\(438\) 0 0
\(439\) 6.46006 + 11.1892i 0.308322 + 0.534029i 0.977995 0.208626i \(-0.0668993\pi\)
−0.669674 + 0.742656i \(0.733566\pi\)
\(440\) 0 0
\(441\) 30.6242 + 6.50938i 1.45830 + 0.309970i
\(442\) 0 0
\(443\) 23.2391 4.93962i 1.10412 0.234688i 0.380429 0.924810i \(-0.375776\pi\)
0.723693 + 0.690122i \(0.242443\pi\)
\(444\) 0 0
\(445\) 4.49500 4.99220i 0.213083 0.236653i
\(446\) 0 0
\(447\) −31.5863 14.0631i −1.49398 0.665163i
\(448\) 0 0
\(449\) 15.7054 11.4106i 0.741181 0.538500i −0.151900 0.988396i \(-0.548539\pi\)
0.893081 + 0.449896i \(0.148539\pi\)
\(450\) 0 0
\(451\) −11.3009 12.5509i −0.532137 0.590998i
\(452\) 0 0
\(453\) 11.4241 5.08632i 0.536749 0.238976i
\(454\) 0 0
\(455\) −0.966440 + 9.19507i −0.0453074 + 0.431071i
\(456\) 0 0
\(457\) 7.52208 23.1506i 0.351868 1.08294i −0.605935 0.795514i \(-0.707201\pi\)
0.957803 0.287424i \(-0.0927990\pi\)
\(458\) 0 0
\(459\) 6.25931 10.8414i 0.292159 0.506035i
\(460\) 0 0
\(461\) −11.8487 36.4665i −0.551848 1.69841i −0.704126 0.710075i \(-0.748661\pi\)
0.152279 0.988338i \(-0.451339\pi\)
\(462\) 0 0
\(463\) −5.33489 3.87603i −0.247934 0.180134i 0.456877 0.889530i \(-0.348968\pi\)
−0.704810 + 0.709396i \(0.748968\pi\)
\(464\) 0 0
\(465\) −19.5138 43.7409i −0.904932 2.02843i
\(466\) 0 0
\(467\) 31.0674 + 22.5718i 1.43763 + 1.04450i 0.988532 + 0.151014i \(0.0482539\pi\)
0.449096 + 0.893484i \(0.351746\pi\)
\(468\) 0 0
\(469\) 2.15270 + 6.62532i 0.0994024 + 0.305929i
\(470\) 0 0
\(471\) 12.5922 21.8104i 0.580220 1.00497i
\(472\) 0 0
\(473\) 6.32051 19.4525i 0.290617 0.894429i
\(474\) 0 0
\(475\) 0.850274 8.08981i 0.0390132 0.371186i
\(476\) 0 0
\(477\) −24.4210 + 10.8729i −1.11816 + 0.497838i
\(478\) 0 0
\(479\) −5.03531 5.59228i −0.230069 0.255518i 0.617046 0.786927i \(-0.288329\pi\)
−0.847115 + 0.531409i \(0.821663\pi\)
\(480\) 0 0
\(481\) −7.31567 + 5.31515i −0.333566 + 0.242350i
\(482\) 0 0
\(483\) 1.26484 + 0.563141i 0.0575520 + 0.0256238i
\(484\) 0 0
\(485\) 6.78981 7.54085i 0.308310 0.342412i
\(486\) 0 0
\(487\) 24.4852 5.20450i 1.10953 0.235838i 0.383528 0.923529i \(-0.374709\pi\)
0.726004 + 0.687691i \(0.241375\pi\)
\(488\) 0 0
\(489\) 8.85217 + 1.88159i 0.400309 + 0.0850883i
\(490\) 0 0
\(491\) −19.8550 34.3899i −0.896044 1.55199i −0.832507 0.554015i \(-0.813095\pi\)
−0.0635377 0.997979i \(-0.520238\pi\)
\(492\) 0 0
\(493\) −0.602573 5.73310i −0.0271385 0.258206i
\(494\) 0 0
\(495\) 38.8281 1.74519
\(496\) 0 0
\(497\) −1.81567 −0.0814440
\(498\) 0 0
\(499\) −2.47252 23.5245i −0.110685 1.05310i −0.899036 0.437875i \(-0.855731\pi\)
0.788351 0.615226i \(-0.210935\pi\)
\(500\) 0 0
\(501\) −19.3199 33.4630i −0.863148 1.49502i
\(502\) 0 0
\(503\) −19.7453 4.19699i −0.880400 0.187135i −0.254532 0.967064i \(-0.581922\pi\)
−0.625867 + 0.779930i \(0.715255\pi\)
\(504\) 0 0
\(505\) −51.5265 + 10.9523i −2.29290 + 0.487370i
\(506\) 0 0
\(507\) −9.18070 + 10.1962i −0.407729 + 0.452829i
\(508\) 0 0
\(509\) 10.8155 + 4.81536i 0.479387 + 0.213437i 0.632180 0.774821i \(-0.282160\pi\)
−0.152793 + 0.988258i \(0.548827\pi\)
\(510\) 0 0
\(511\) −12.5717 + 9.13389i −0.556140 + 0.404060i
\(512\) 0 0
\(513\) −9.72394 10.7995i −0.429322 0.476811i
\(514\) 0 0
\(515\) −21.9300 + 9.76388i −0.966352 + 0.430248i
\(516\) 0 0
\(517\) −2.02354 + 19.2526i −0.0889950 + 0.846731i
\(518\) 0 0
\(519\) 17.0275 52.4051i 0.747422 2.30033i
\(520\) 0 0
\(521\) 16.3742 28.3610i 0.717368 1.24252i −0.244672 0.969606i \(-0.578680\pi\)
0.962039 0.272911i \(-0.0879865\pi\)
\(522\) 0 0
\(523\) 9.11682 + 28.0587i 0.398651 + 1.22692i 0.926082 + 0.377323i \(0.123155\pi\)
−0.527431 + 0.849598i \(0.676845\pi\)
\(524\) 0 0
\(525\) −9.72679 7.06693i −0.424512 0.308426i
\(526\) 0 0
\(527\) 8.79490 5.08650i 0.383112 0.221571i
\(528\) 0 0
\(529\) 18.4492 + 13.4041i 0.802138 + 0.582788i
\(530\) 0 0
\(531\) 19.9404 + 61.3703i 0.865340 + 2.66324i
\(532\) 0 0
\(533\) 9.98053 17.2868i 0.432305 0.748774i
\(534\) 0 0
\(535\) 11.1643 34.3600i 0.482673 1.48551i
\(536\) 0 0
\(537\) −0.0239919 + 0.228267i −0.00103533 + 0.00985047i
\(538\) 0 0
\(539\) −12.9472 + 5.76446i −0.557675 + 0.248293i
\(540\) 0 0
\(541\) 8.87657 + 9.85843i 0.381634 + 0.423847i 0.903104 0.429423i \(-0.141283\pi\)
−0.521470 + 0.853270i \(0.674616\pi\)
\(542\) 0 0
\(543\) −5.06264 + 3.67822i −0.217258 + 0.157848i
\(544\) 0 0
\(545\) −1.71690 0.764415i −0.0735441 0.0327439i
\(546\) 0 0
\(547\) −25.2689 + 28.0640i −1.08042 + 1.19993i −0.101684 + 0.994817i \(0.532423\pi\)
−0.978738 + 0.205114i \(0.934244\pi\)
\(548\) 0 0
\(549\) 75.8388 16.1200i 3.23672 0.687986i
\(550\) 0 0
\(551\) −6.54568 1.39133i −0.278855 0.0592725i
\(552\) 0 0
\(553\) −1.86539 3.23095i −0.0793245 0.137394i
\(554\) 0 0
\(555\) −2.82955 26.9214i −0.120108 1.14275i
\(556\) 0 0
\(557\) −11.3637 −0.481496 −0.240748 0.970588i \(-0.577393\pi\)
−0.240748 + 0.970588i \(0.577393\pi\)
\(558\) 0 0
\(559\) 24.1743 1.02246
\(560\) 0 0
\(561\) 1.34179 + 12.7663i 0.0566505 + 0.538993i
\(562\) 0 0
\(563\) −10.0933 17.4821i −0.425381 0.736781i 0.571075 0.820898i \(-0.306526\pi\)
−0.996456 + 0.0841167i \(0.973193\pi\)
\(564\) 0 0
\(565\) 32.8643 + 6.98552i 1.38261 + 0.293883i
\(566\) 0 0
\(567\) −3.95417 + 0.840485i −0.166060 + 0.0352971i
\(568\) 0 0
\(569\) −20.7361 + 23.0298i −0.869304 + 0.965460i −0.999662 0.0260074i \(-0.991721\pi\)
0.130358 + 0.991467i \(0.458387\pi\)
\(570\) 0 0
\(571\) 9.50060 + 4.22994i 0.397588 + 0.177017i 0.595784 0.803145i \(-0.296842\pi\)
−0.198196 + 0.980162i \(0.563508\pi\)
\(572\) 0 0
\(573\) −12.5034 + 9.08427i −0.522338 + 0.379501i
\(574\) 0 0
\(575\) 1.13628 + 1.26197i 0.0473863 + 0.0526279i
\(576\) 0 0
\(577\) 4.94581 2.20201i 0.205897 0.0916711i −0.301197 0.953562i \(-0.597386\pi\)
0.507094 + 0.861891i \(0.330720\pi\)
\(578\) 0 0
\(579\) 0.645291 6.13953i 0.0268174 0.255150i
\(580\) 0 0
\(581\) −4.29819 + 13.2285i −0.178319 + 0.548809i
\(582\) 0 0
\(583\) 6.05046 10.4797i 0.250585 0.434025i
\(584\) 0 0
\(585\) 14.1811 + 43.6451i 0.586318 + 1.80450i
\(586\) 0 0
\(587\) −10.1635 7.38424i −0.419494 0.304780i 0.357940 0.933744i \(-0.383479\pi\)
−0.777434 + 0.628964i \(0.783479\pi\)
\(588\) 0 0
\(589\) −2.46073 11.5345i −0.101393 0.475270i
\(590\) 0 0
\(591\) 13.7535 + 9.99247i 0.565741 + 0.411035i
\(592\) 0 0
\(593\) 8.36510 + 25.7451i 0.343513 + 1.05723i 0.962375 + 0.271726i \(0.0875943\pi\)
−0.618861 + 0.785500i \(0.712406\pi\)
\(594\) 0 0
\(595\) 2.93551 5.08445i 0.120344 0.208442i
\(596\) 0 0
\(597\) −6.19413 + 19.0636i −0.253509 + 0.780220i
\(598\) 0 0
\(599\) −1.50051 + 14.2764i −0.0613094 + 0.583320i 0.920139 + 0.391592i \(0.128076\pi\)
−0.981448 + 0.191727i \(0.938591\pi\)
\(600\) 0 0
\(601\) 0.584684 0.260318i 0.0238498 0.0106186i −0.394777 0.918777i \(-0.629178\pi\)
0.418627 + 0.908158i \(0.362512\pi\)
\(602\) 0 0
\(603\) 23.1366 + 25.6958i 0.942197 + 1.04642i
\(604\) 0 0
\(605\) 12.2397 8.89266i 0.497614 0.361538i
\(606\) 0 0
\(607\) 5.95432 + 2.65104i 0.241679 + 0.107602i 0.524002 0.851717i \(-0.324438\pi\)
−0.282323 + 0.959319i \(0.591105\pi\)
\(608\) 0 0
\(609\) −6.61834 + 7.35041i −0.268189 + 0.297854i
\(610\) 0 0
\(611\) −22.3802 + 4.75706i −0.905405 + 0.192450i
\(612\) 0 0
\(613\) −10.2171 2.17170i −0.412663 0.0877143i −0.00309833 0.999995i \(-0.500986\pi\)
−0.409565 + 0.912281i \(0.634320\pi\)
\(614\) 0 0
\(615\) 29.8772 + 51.7489i 1.20477 + 2.08672i
\(616\) 0 0
\(617\) −2.26862 21.5845i −0.0913311 0.868958i −0.940262 0.340453i \(-0.889420\pi\)
0.848930 0.528505i \(-0.177247\pi\)
\(618\) 0 0
\(619\) −28.5478 −1.14743 −0.573716 0.819054i \(-0.694499\pi\)
−0.573716 + 0.819054i \(0.694499\pi\)
\(620\) 0 0
\(621\) 3.03377 0.121741
\(622\) 0 0
\(623\) −0.255566 2.43155i −0.0102390 0.0974178i
\(624\) 0 0
\(625\) 14.7271 + 25.5080i 0.589083 + 1.02032i
\(626\) 0 0
\(627\) 14.5757 + 3.09816i 0.582098 + 0.123729i
\(628\) 0 0
\(629\) 5.61660 1.19385i 0.223949 0.0476018i
\(630\) 0 0
\(631\) −18.2275 + 20.2436i −0.725624 + 0.805887i −0.987232 0.159287i \(-0.949080\pi\)
0.261609 + 0.965174i \(0.415747\pi\)
\(632\) 0 0
\(633\) −44.1638 19.6630i −1.75535 0.781533i
\(634\) 0 0
\(635\) 0.283370 0.205880i 0.0112452 0.00817012i
\(636\) 0 0
\(637\) −11.2083 12.4481i −0.444089 0.493210i
\(638\) 0 0
\(639\) −8.23296 + 3.66555i −0.325691 + 0.145007i
\(640\) 0 0
\(641\) −4.30742 + 40.9824i −0.170133 + 1.61871i 0.492880 + 0.870097i \(0.335944\pi\)
−0.663013 + 0.748608i \(0.730722\pi\)
\(642\) 0 0
\(643\) 9.52156 29.3044i 0.375494 1.15565i −0.567651 0.823269i \(-0.692148\pi\)
0.943145 0.332382i \(-0.107852\pi\)
\(644\) 0 0
\(645\) −36.1834 + 62.6715i −1.42472 + 2.46769i
\(646\) 0 0
\(647\) −2.75525 8.47978i −0.108320 0.333375i 0.882175 0.470921i \(-0.156078\pi\)
−0.990495 + 0.137547i \(0.956078\pi\)
\(648\) 0 0
\(649\) −23.6317 17.1694i −0.927623 0.673958i
\(650\) 0 0
\(651\) −16.5830 5.37445i −0.649938 0.210641i
\(652\) 0 0
\(653\) −31.7469 23.0655i −1.24235 0.902623i −0.244601 0.969624i \(-0.578657\pi\)
−0.997753 + 0.0670010i \(0.978657\pi\)
\(654\) 0 0
\(655\) −5.31417 16.3553i −0.207642 0.639056i
\(656\) 0 0
\(657\) −38.5652 + 66.7969i −1.50457 + 2.60600i
\(658\) 0 0
\(659\) −10.1832 + 31.3407i −0.396681 + 1.22086i 0.530963 + 0.847395i \(0.321830\pi\)
−0.927644 + 0.373465i \(0.878170\pi\)
\(660\) 0 0
\(661\) 0.0177359 0.168746i 0.000689846 0.00656345i −0.994172 0.107810i \(-0.965616\pi\)
0.994861 + 0.101246i \(0.0322830\pi\)
\(662\) 0 0
\(663\) −13.8600 + 6.17087i −0.538278 + 0.239657i
\(664\) 0 0
\(665\) −4.56036 5.06479i −0.176843 0.196404i
\(666\) 0 0
\(667\) 1.13021 0.821147i 0.0437620 0.0317950i
\(668\) 0 0
\(669\) 16.5503 + 7.36866i 0.639871 + 0.284889i
\(670\) 0 0
\(671\) −23.4846 + 26.0823i −0.906612 + 1.00689i
\(672\) 0 0
\(673\) 14.2676 3.03267i 0.549976 0.116901i 0.0754613 0.997149i \(-0.475957\pi\)
0.474514 + 0.880248i \(0.342624\pi\)
\(674\) 0 0
\(675\) −25.7689 5.47735i −0.991845 0.210823i
\(676\) 0 0
\(677\) −7.88341 13.6545i −0.302984 0.524784i 0.673826 0.738890i \(-0.264650\pi\)
−0.976810 + 0.214106i \(0.931316\pi\)
\(678\) 0 0
\(679\) −0.386039 3.67291i −0.0148148 0.140953i
\(680\) 0 0
\(681\) 22.7051 0.870063
\(682\) 0 0
\(683\) −20.5935 −0.787988 −0.393994 0.919113i \(-0.628907\pi\)
−0.393994 + 0.919113i \(0.628907\pi\)
\(684\) 0 0
\(685\) −3.66897 34.9079i −0.140184 1.33376i
\(686\) 0 0
\(687\) −18.4780 32.0048i −0.704979 1.22106i
\(688\) 0 0
\(689\) 13.9896 + 2.97359i 0.532962 + 0.113285i
\(690\) 0 0
\(691\) −5.82165 + 1.23743i −0.221466 + 0.0470741i −0.317308 0.948322i \(-0.602779\pi\)
0.0958421 + 0.995397i \(0.469446\pi\)
\(692\) 0 0
\(693\) 9.45597 10.5019i 0.359203 0.398935i
\(694\) 0 0
\(695\) 41.8889 + 18.6502i 1.58894 + 0.707441i
\(696\) 0 0
\(697\) −10.2545 + 7.45032i −0.388417 + 0.282201i
\(698\) 0 0
\(699\) 24.6209 + 27.3443i 0.931248 + 1.03426i
\(700\) 0 0
\(701\) −24.3281 + 10.8316i −0.918859 + 0.409103i −0.810988 0.585062i \(-0.801070\pi\)
−0.107871 + 0.994165i \(0.534403\pi\)
\(702\) 0 0
\(703\) 0.696753 6.62916i 0.0262785 0.250024i
\(704\) 0 0
\(705\) 21.1655 65.1407i 0.797138 2.45334i
\(706\) 0 0
\(707\) −9.58617 + 16.6037i −0.360525 + 0.624448i
\(708\) 0 0
\(709\) −0.816662 2.51343i −0.0306704 0.0943938i 0.934550 0.355833i \(-0.115803\pi\)
−0.965220 + 0.261439i \(0.915803\pi\)
\(710\) 0 0
\(711\) −14.9812 10.8845i −0.561839 0.408200i
\(712\) 0 0
\(713\) 2.13321 + 1.22948i 0.0798892 + 0.0460445i
\(714\) 0 0
\(715\) −16.8063 12.2105i −0.628519 0.456646i
\(716\) 0 0
\(717\) 22.7315 + 69.9605i 0.848925 + 2.61272i
\(718\) 0 0
\(719\) 2.59912 4.50181i 0.0969308 0.167889i −0.813482 0.581590i \(-0.802431\pi\)
0.910413 + 0.413701i \(0.135764\pi\)
\(720\) 0 0
\(721\) −2.69986 + 8.30930i −0.100548 + 0.309455i
\(722\) 0 0
\(723\) −0.714035 + 6.79359i −0.0265552 + 0.252656i
\(724\) 0 0
\(725\) −11.0826 + 4.93428i −0.411596 + 0.183254i
\(726\) 0 0
\(727\) −16.1973 17.9889i −0.600723 0.667171i 0.363705 0.931514i \(-0.381512\pi\)
−0.964429 + 0.264343i \(0.914845\pi\)
\(728\) 0 0
\(729\) 31.9419 23.2071i 1.18303 0.859524i
\(730\) 0 0
\(731\) −14.0235 6.24366i −0.518677 0.230930i
\(732\) 0 0
\(733\) 27.0080 29.9954i 0.997562 1.10790i 0.00340093 0.999994i \(-0.498917\pi\)
0.994161 0.107910i \(-0.0344159\pi\)
\(734\) 0 0
\(735\) 49.0478 10.4254i 1.80916 0.384548i
\(736\) 0 0
\(737\) −15.3101 3.25427i −0.563955 0.119872i
\(738\) 0 0
\(739\) 3.04893 + 5.28089i 0.112157 + 0.194261i 0.916640 0.399715i \(-0.130891\pi\)
−0.804483 + 0.593976i \(0.797558\pi\)
\(740\) 0 0
\(741\) 1.84095 + 17.5155i 0.0676292 + 0.643449i
\(742\) 0 0
\(743\) −16.2263 −0.595284 −0.297642 0.954678i \(-0.596200\pi\)
−0.297642 + 0.954678i \(0.596200\pi\)
\(744\) 0 0
\(745\) −35.5308 −1.30175
\(746\) 0 0
\(747\) 7.21649 + 68.6603i 0.264038 + 2.51215i
\(748\) 0 0
\(749\) −6.57456 11.3875i −0.240229 0.416089i
\(750\) 0 0
\(751\) 35.6481 + 7.57723i 1.30082 + 0.276497i 0.805697 0.592328i \(-0.201791\pi\)
0.495119 + 0.868825i \(0.335124\pi\)
\(752\) 0 0
\(753\) 6.66944 1.41763i 0.243048 0.0516614i
\(754\) 0 0
\(755\) 8.59879 9.54992i 0.312942 0.347557i
\(756\) 0 0
\(757\) 39.7960 + 17.7183i 1.44641 + 0.643984i 0.971713 0.236164i \(-0.0758904\pi\)
0.474699 + 0.880148i \(0.342557\pi\)
\(758\) 0 0
\(759\) −2.51672 + 1.82851i −0.0913512 + 0.0663705i
\(760\) 0 0
\(761\) 2.20765 + 2.45184i 0.0800272 + 0.0888792i 0.781828 0.623494i \(-0.214287\pi\)
−0.701801 + 0.712373i \(0.747621\pi\)
\(762\) 0 0
\(763\) −0.624878 + 0.278214i −0.0226221 + 0.0100720i
\(764\) 0 0
\(765\) 3.04605 28.9812i 0.110130 1.04782i
\(766\) 0 0
\(767\) 10.6685 32.8342i 0.385216 1.18557i
\(768\) 0 0
\(769\) 22.8568 39.5891i 0.824237 1.42762i −0.0782634 0.996933i \(-0.524938\pi\)
0.902501 0.430688i \(-0.141729\pi\)
\(770\) 0 0
\(771\) −23.2585 71.5823i −0.837635 2.57798i
\(772\) 0 0
\(773\) −24.2710 17.6339i −0.872969 0.634249i 0.0584131 0.998292i \(-0.481396\pi\)
−0.931382 + 0.364044i \(0.881396\pi\)
\(774\) 0 0
\(775\) −15.8997 14.2946i −0.571133 0.513479i
\(776\) 0 0
\(777\) −7.97058 5.79097i −0.285943 0.207750i
\(778\) 0 0
\(779\) 4.54689 + 13.9939i 0.162909 + 0.501383i
\(780\) 0 0
\(781\) 2.03977 3.53298i 0.0729886 0.126420i
\(782\) 0 0
\(783\) −6.69730 + 20.6122i −0.239342 + 0.736619i
\(784\) 0 0
\(785\) 2.70523 25.7385i 0.0965537 0.918647i
\(786\) 0 0
\(787\) 39.4944 17.5840i 1.40782 0.626803i 0.444654 0.895702i \(-0.353327\pi\)
0.963168 + 0.268899i \(0.0866599\pi\)
\(788\) 0 0
\(789\) −44.4030 49.3145i −1.58079 1.75564i
\(790\) 0 0
\(791\) 9.89298 7.18767i 0.351754 0.255564i
\(792\) 0 0
\(793\) −37.8953 16.8721i −1.34570 0.599145i
\(794\) 0 0
\(795\) −28.6483 + 31.8172i −1.01605 + 1.12844i
\(796\) 0 0
\(797\) −22.3250 + 4.74532i −0.790792 + 0.168088i −0.585564 0.810626i \(-0.699127\pi\)
−0.205228 + 0.978714i \(0.565794\pi\)
\(798\) 0 0
\(799\) 14.2114 + 3.02072i 0.502763 + 0.106865i
\(800\) 0 0
\(801\) −6.06773 10.5096i −0.214393 0.371339i
\(802\) 0 0
\(803\) −3.64960 34.7236i −0.128792 1.22537i
\(804\) 0 0
\(805\) 1.42279 0.0501467
\(806\) 0 0
\(807\) −49.3229 −1.73625
\(808\) 0 0
\(809\) 2.22002 + 21.1221i 0.0780517 + 0.742613i 0.961634 + 0.274336i \(0.0884581\pi\)
−0.883582 + 0.468276i \(0.844875\pi\)
\(810\) 0 0
\(811\) 1.06157 + 1.83869i 0.0372767 + 0.0645652i 0.884062 0.467370i \(-0.154798\pi\)
−0.846785 + 0.531935i \(0.821465\pi\)
\(812\) 0 0
\(813\) 20.5081 + 4.35913i 0.719250 + 0.152881i
\(814\) 0 0
\(815\) 9.09675 1.93357i 0.318645 0.0677301i
\(816\) 0 0
\(817\) −11.9237 + 13.2426i −0.417158 + 0.463301i
\(818\) 0 0
\(819\) 15.2584 + 6.79347i 0.533171 + 0.237383i
\(820\) 0 0
\(821\) −33.8104 + 24.5647i −1.17999 + 0.857313i −0.992171 0.124891i \(-0.960142\pi\)
−0.187819 + 0.982204i \(0.560142\pi\)
\(822\) 0 0
\(823\) −10.9058 12.1121i −0.380153 0.422203i 0.522454 0.852667i \(-0.325016\pi\)
−0.902608 + 0.430464i \(0.858350\pi\)
\(824\) 0 0
\(825\) 24.6783 10.9875i 0.859189 0.382535i
\(826\) 0 0
\(827\) −3.24974 + 30.9192i −0.113005 + 1.07517i 0.780205 + 0.625524i \(0.215115\pi\)
−0.893209 + 0.449642i \(0.851552\pi\)
\(828\) 0 0
\(829\) −8.66756 + 26.6760i −0.301037 + 0.926496i 0.680090 + 0.733129i \(0.261941\pi\)
−0.981126 + 0.193367i \(0.938059\pi\)
\(830\) 0 0
\(831\) −21.8491 + 37.8437i −0.757936 + 1.31278i
\(832\) 0 0
\(833\) 3.28688 + 10.1160i 0.113884 + 0.350498i
\(834\) 0 0
\(835\) −32.1239 23.3394i −1.11169 0.807692i
\(836\) 0 0
\(837\) −37.9848 + 4.02104i −1.31295 + 0.138988i
\(838\) 0 0
\(839\) −18.6621 13.5588i −0.644287 0.468102i 0.217034 0.976164i \(-0.430362\pi\)
−0.861320 + 0.508062i \(0.830362\pi\)
\(840\) 0 0
\(841\) −5.87746 18.0890i −0.202671 0.623757i
\(842\) 0 0
\(843\) 3.59793 6.23179i 0.123919 0.214634i
\(844\) 0 0
\(845\) −4.35696 + 13.4093i −0.149884 + 0.461296i
\(846\) 0 0
\(847\) 0.575568 5.47617i 0.0197768 0.188163i
\(848\) 0 0
\(849\) 12.4925 5.56202i 0.428741 0.190888i
\(850\) 0 0
\(851\) 0.931124 + 1.03412i 0.0319185 + 0.0354491i
\(852\) 0 0
\(853\) −24.2874 + 17.6458i −0.831585 + 0.604182i −0.920007 0.391901i \(-0.871818\pi\)
0.0884221 + 0.996083i \(0.471818\pi\)
\(854\) 0 0
\(855\) −30.9035 13.7591i −1.05688 0.470551i
\(856\) 0 0
\(857\) −36.5261 + 40.5663i −1.24771 + 1.38572i −0.355135 + 0.934815i \(0.615565\pi\)
−0.892572 + 0.450904i \(0.851102\pi\)
\(858\) 0 0
\(859\) 9.13238 1.94115i 0.311593 0.0662311i −0.0494610 0.998776i \(-0.515750\pi\)
0.361054 + 0.932545i \(0.382417\pi\)
\(860\) 0 0
\(861\) 21.2728 + 4.52167i 0.724974 + 0.154098i
\(862\) 0 0
\(863\) 6.65836 + 11.5326i 0.226653 + 0.392575i 0.956814 0.290700i \(-0.0938882\pi\)
−0.730161 + 0.683275i \(0.760555\pi\)
\(864\) 0 0
\(865\) −5.91886 56.3142i −0.201247 1.91474i
\(866\) 0 0
\(867\) −39.5520 −1.34326
\(868\) 0 0
\(869\) 8.38250 0.284357
\(870\) 0 0
\(871\) −1.93371 18.3980i −0.0655213 0.623394i
\(872\) 0 0
\(873\) −9.16547 15.8751i −0.310204 0.537290i
\(874\) 0 0
\(875\) 3.65034 + 0.775903i 0.123404 + 0.0262303i
\(876\) 0 0
\(877\) 41.6359 8.84998i 1.40594 0.298843i 0.558402 0.829571i \(-0.311415\pi\)
0.847542 + 0.530728i \(0.178081\pi\)
\(878\) 0 0
\(879\) −20.4225 + 22.6815i −0.688835 + 0.765029i
\(880\) 0 0
\(881\) −5.27402 2.34814i −0.177686 0.0791110i 0.315966 0.948771i \(-0.397672\pi\)
−0.493652 + 0.869660i \(0.664338\pi\)
\(882\) 0 0
\(883\) 22.0029 15.9860i 0.740457 0.537973i −0.152397 0.988319i \(-0.548699\pi\)
0.892854 + 0.450346i \(0.148699\pi\)
\(884\) 0 0
\(885\) 69.1539 + 76.8032i 2.32458 + 2.58171i
\(886\) 0 0
\(887\) 6.73437 2.99834i 0.226118 0.100674i −0.290551 0.956860i \(-0.593839\pi\)
0.516669 + 0.856185i \(0.327172\pi\)
\(888\) 0 0
\(889\) 0.0133254 0.126783i 0.000446920 0.00425216i
\(890\) 0 0
\(891\) 2.80677 8.63835i 0.0940304 0.289396i
\(892\) 0 0
\(893\) 8.43290 14.6062i 0.282196 0.488778i
\(894\) 0 0
\(895\) 0.0728867 + 0.224322i 0.00243633 + 0.00749826i
\(896\) 0 0
\(897\) −2.97453 2.16112i −0.0993166 0.0721578i
\(898\) 0 0
\(899\) −13.0626 + 11.7793i −0.435663 + 0.392862i
\(900\) 0 0
\(901\) −7.34737 5.33818i −0.244776 0.177841i
\(902\) 0 0
\(903\) 8.13900 + 25.0493i 0.270849 + 0.833588i
\(904\) 0 0
\(905\) −3.21533 + 5.56911i −0.106881 + 0.185123i
\(906\) 0 0
\(907\) −5.09354 + 15.6763i −0.169128 + 0.520523i −0.999317 0.0369599i \(-0.988233\pi\)
0.830189 + 0.557482i \(0.188233\pi\)
\(908\) 0 0
\(909\) −9.94714 + 94.6408i −0.329926 + 3.13904i
\(910\) 0 0
\(911\) −40.9333 + 18.2247i −1.35618 + 0.603810i −0.950648 0.310271i \(-0.899580\pi\)
−0.405531 + 0.914081i \(0.632913\pi\)
\(912\) 0 0
\(913\) −20.9116 23.2247i −0.692073 0.768625i
\(914\) 0 0
\(915\) 100.461 72.9895i 3.32115 2.41296i
\(916\) 0 0
\(917\) −5.71785 2.54575i −0.188820 0.0840681i
\(918\) 0 0
\(919\) 6.93006 7.69662i 0.228602 0.253888i −0.617921 0.786240i \(-0.712025\pi\)
0.846523 + 0.532352i \(0.178692\pi\)
\(920\) 0 0
\(921\) 7.49544 1.59320i 0.246983 0.0524979i
\(922\) 0 0
\(923\) 4.71626 + 1.00247i 0.155238 + 0.0329968i
\(924\) 0 0
\(925\) −6.04191 10.4649i −0.198657 0.344084i
\(926\) 0 0
\(927\) 4.53296 + 43.1282i 0.148882 + 1.41652i
\(928\) 0 0
\(929\) 44.0624 1.44564 0.722820 0.691037i \(-0.242846\pi\)
0.722820 + 0.691037i \(0.242846\pi\)
\(930\) 0 0
\(931\) 12.3474 0.404671
\(932\) 0 0
\(933\) 1.66725 + 15.8629i 0.0545834 + 0.519327i
\(934\) 0 0
\(935\) 6.59563 + 11.4240i 0.215700 + 0.373604i
\(936\) 0 0
\(937\) 33.8116 + 7.18687i 1.10458 + 0.234785i 0.723887 0.689918i \(-0.242354\pi\)
0.380689 + 0.924703i \(0.375687\pi\)
\(938\) 0 0
\(939\) 75.4933 16.0466i 2.46363 0.523661i
\(940\) 0 0
\(941\) −14.8206 + 16.4600i −0.483138 + 0.536580i −0.934595 0.355713i \(-0.884238\pi\)
0.451457 + 0.892293i \(0.350905\pi\)
\(942\) 0 0
\(943\) −2.80617 1.24939i −0.0913814 0.0406856i
\(944\) 0 0
\(945\) −17.8572 + 12.9740i −0.580894 + 0.422044i
\(946\) 0 0
\(947\) 18.7909 + 20.8694i 0.610622 + 0.678165i 0.966588 0.256334i \(-0.0825148\pi\)
−0.355966 + 0.934499i \(0.615848\pi\)
\(948\) 0 0
\(949\) 37.6985 16.7844i 1.22374 0.544846i
\(950\) 0 0
\(951\) −3.24818 + 30.9044i −0.105330 + 1.00214i
\(952\) 0 0
\(953\) 2.36916 7.29152i 0.0767446 0.236196i −0.905323 0.424723i \(-0.860371\pi\)
0.982068 + 0.188527i \(0.0603715\pi\)
\(954\) 0 0
\(955\) −7.94104 + 13.7543i −0.256966 + 0.445078i
\(956\) 0 0
\(957\) −6.86743 21.1358i −0.221992 0.683222i
\(958\) 0 0
\(959\) −10.3352 7.50893i −0.333740 0.242476i
\(960\) 0 0
\(961\) −28.3387 12.5665i −0.914152 0.405372i
\(962\) 0 0
\(963\) −52.8011 38.3622i −1.70149 1.23621i
\(964\) 0 0
\(965\) −1.96038 6.03342i −0.0631067 0.194223i
\(966\) 0 0
\(967\) −0.925182 + 1.60246i −0.0297518 + 0.0515317i −0.880518 0.474013i \(-0.842805\pi\)
0.850766 + 0.525545i \(0.176138\pi\)
\(968\) 0 0
\(969\) 3.45592 10.6362i 0.111020 0.341685i
\(970\) 0 0
\(971\) 5.16072 49.1010i 0.165615 1.57573i −0.524107 0.851652i \(-0.675601\pi\)
0.689723 0.724074i \(-0.257732\pi\)
\(972\) 0 0
\(973\) 15.2457 6.78784i 0.488756 0.217608i
\(974\) 0 0
\(975\) 21.3638 + 23.7270i 0.684191 + 0.759871i
\(976\) 0 0
\(977\) 28.8192 20.9383i 0.922007 0.669877i −0.0220160 0.999758i \(-0.507008\pi\)
0.944023 + 0.329881i \(0.107008\pi\)
\(978\) 0 0
\(979\) 5.01847 + 2.23437i 0.160391 + 0.0714107i
\(980\) 0 0
\(981\) −2.27177 + 2.52306i −0.0725321 + 0.0805550i
\(982\) 0 0
\(983\) −6.24409 + 1.32722i −0.199156 + 0.0423318i −0.306409 0.951900i \(-0.599128\pi\)
0.107254 + 0.994232i \(0.465794\pi\)
\(984\) 0 0
\(985\) 17.0881 + 3.63220i 0.544473 + 0.115731i
\(986\) 0 0
\(987\) −12.4642 21.5887i −0.396740 0.687175i
\(988\) 0 0
\(989\) −0.388855 3.69971i −0.0123649 0.117644i
\(990\) 0 0
\(991\) 44.2919 1.40698 0.703489 0.710706i \(-0.251624\pi\)
0.703489 + 0.710706i \(0.251624\pi\)
\(992\) 0 0
\(993\) −56.8463 −1.80396
\(994\) 0 0
\(995\) 2.15312 + 20.4856i 0.0682586 + 0.649437i
\(996\) 0 0
\(997\) −2.66158 4.60999i −0.0842931 0.146000i 0.820797 0.571220i \(-0.193530\pi\)
−0.905090 + 0.425221i \(0.860197\pi\)
\(998\) 0 0
\(999\) −21.1162 4.48839i −0.668087 0.142006i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 496.2.bg.c.289.1 16
4.3 odd 2 31.2.g.a.10.2 16
12.11 even 2 279.2.y.c.10.1 16
20.3 even 4 775.2.ck.a.599.2 32
20.7 even 4 775.2.ck.a.599.3 32
20.19 odd 2 775.2.bl.a.351.1 16
31.28 even 15 inner 496.2.bg.c.369.1 16
124.3 even 30 961.2.g.l.338.2 16
124.7 odd 30 961.2.c.j.521.4 16
124.11 even 30 961.2.a.j.1.4 8
124.15 even 10 961.2.g.j.235.2 16
124.19 odd 30 961.2.g.s.448.1 16
124.23 even 10 961.2.g.m.547.1 16
124.27 even 10 961.2.c.i.439.4 16
124.35 odd 10 961.2.c.j.439.4 16
124.39 odd 10 961.2.g.s.547.1 16
124.43 even 30 961.2.g.m.448.1 16
124.47 odd 10 961.2.g.k.235.2 16
124.51 odd 30 961.2.a.i.1.4 8
124.55 even 30 961.2.c.i.521.4 16
124.59 odd 30 31.2.g.a.28.2 yes 16
124.67 odd 6 961.2.d.o.374.3 16
124.71 odd 30 961.2.d.p.531.2 16
124.75 even 30 961.2.d.n.388.3 16
124.79 even 30 961.2.g.n.844.1 16
124.83 even 30 961.2.d.q.628.2 16
124.87 odd 6 961.2.g.k.732.2 16
124.91 even 10 961.2.g.n.846.1 16
124.95 odd 10 961.2.g.t.846.1 16
124.99 even 6 961.2.g.j.732.2 16
124.103 odd 30 961.2.d.p.628.2 16
124.107 odd 30 961.2.g.t.844.1 16
124.111 odd 30 961.2.d.o.388.3 16
124.115 even 30 961.2.d.q.531.2 16
124.119 even 6 961.2.d.n.374.3 16
124.123 even 2 961.2.g.l.816.2 16
372.11 odd 30 8649.2.a.be.1.5 8
372.59 even 30 279.2.y.c.28.1 16
372.299 even 30 8649.2.a.bf.1.5 8
620.59 odd 30 775.2.bl.a.276.1 16
620.183 even 60 775.2.ck.a.524.3 32
620.307 even 60 775.2.ck.a.524.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.2 16 4.3 odd 2
31.2.g.a.28.2 yes 16 124.59 odd 30
279.2.y.c.10.1 16 12.11 even 2
279.2.y.c.28.1 16 372.59 even 30
496.2.bg.c.289.1 16 1.1 even 1 trivial
496.2.bg.c.369.1 16 31.28 even 15 inner
775.2.bl.a.276.1 16 620.59 odd 30
775.2.bl.a.351.1 16 20.19 odd 2
775.2.ck.a.524.2 32 620.307 even 60
775.2.ck.a.524.3 32 620.183 even 60
775.2.ck.a.599.2 32 20.3 even 4
775.2.ck.a.599.3 32 20.7 even 4
961.2.a.i.1.4 8 124.51 odd 30
961.2.a.j.1.4 8 124.11 even 30
961.2.c.i.439.4 16 124.27 even 10
961.2.c.i.521.4 16 124.55 even 30
961.2.c.j.439.4 16 124.35 odd 10
961.2.c.j.521.4 16 124.7 odd 30
961.2.d.n.374.3 16 124.119 even 6
961.2.d.n.388.3 16 124.75 even 30
961.2.d.o.374.3 16 124.67 odd 6
961.2.d.o.388.3 16 124.111 odd 30
961.2.d.p.531.2 16 124.71 odd 30
961.2.d.p.628.2 16 124.103 odd 30
961.2.d.q.531.2 16 124.115 even 30
961.2.d.q.628.2 16 124.83 even 30
961.2.g.j.235.2 16 124.15 even 10
961.2.g.j.732.2 16 124.99 even 6
961.2.g.k.235.2 16 124.47 odd 10
961.2.g.k.732.2 16 124.87 odd 6
961.2.g.l.338.2 16 124.3 even 30
961.2.g.l.816.2 16 124.123 even 2
961.2.g.m.448.1 16 124.43 even 30
961.2.g.m.547.1 16 124.23 even 10
961.2.g.n.844.1 16 124.79 even 30
961.2.g.n.846.1 16 124.91 even 10
961.2.g.s.448.1 16 124.19 odd 30
961.2.g.s.547.1 16 124.39 odd 10
961.2.g.t.844.1 16 124.107 odd 30
961.2.g.t.846.1 16 124.95 odd 10
8649.2.a.be.1.5 8 372.11 odd 30
8649.2.a.bf.1.5 8 372.299 even 30