Properties

Label 31.2.g.a.10.2
Level 31
Weight 2
Character 31.10
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 10.2
Root \(-2.52368i\)
Character \(\chi\) = 31.10
Dual form 31.2.g.a.28.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.284315 - 0.206567i) q^{2}\) \(+(0.302431 + 2.87744i) q^{3}\) \(+(-0.579869 - 1.78465i) q^{4}\) \(+(-1.48661 - 2.57489i) q^{5}\) \(+(0.508398 - 0.880572i) q^{6}\) \(+(1.05848 + 0.224987i) q^{7}\) \(+(-0.420982 + 1.29565i) q^{8}\) \(+(-5.25377 + 1.11672i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.284315 - 0.206567i) q^{2}\) \(+(0.302431 + 2.87744i) q^{3}\) \(+(-0.579869 - 1.78465i) q^{4}\) \(+(-1.48661 - 2.57489i) q^{5}\) \(+(0.508398 - 0.880572i) q^{6}\) \(+(1.05848 + 0.224987i) q^{7}\) \(+(-0.420982 + 1.29565i) q^{8}\) \(+(-5.25377 + 1.11672i) q^{9}\) \(+(-0.109221 + 1.03917i) q^{10}\) \(+(-1.62690 + 1.80686i) q^{11}\) \(+(4.95987 - 2.20827i) q^{12}\) \(+(2.62521 + 1.16882i) q^{13}\) \(+(-0.254466 - 0.282614i) q^{14}\) \(+(6.95951 - 5.05638i) q^{15}\) \(+(-2.64890 + 1.92454i) q^{16}\) \(+(-1.22101 - 1.35606i) q^{17}\) \(+(1.72440 + 0.767753i) q^{18}\) \(+(1.93514 - 0.861580i) q^{19}\) \(+(-3.73325 + 4.14619i) q^{20}\) \(+(-0.327269 + 3.11375i) q^{21}\) \(+(0.835790 - 0.177653i) q^{22}\) \(+(-0.136652 + 0.420572i) q^{23}\) \(+(-3.85547 - 0.819506i) q^{24}\) \(+(-1.92005 + 3.32562i) q^{25}\) \(+(-0.504947 - 0.874594i) q^{26}\) \(+(-2.11998 - 6.52462i) q^{27}\) \(+(-0.212256 - 2.01948i) q^{28}\) \(+(2.55579 + 1.85689i) q^{29}\) \(-3.02317 q^{30}\) \(+(1.15354 - 5.44696i) q^{31}\) \(+3.87532 q^{32}\) \(+(-5.69116 - 4.13487i) q^{33}\) \(+(0.0670322 + 0.637769i) q^{34}\) \(+(-0.994234 - 3.05994i) q^{35}\) \(+(5.03946 + 8.72860i) q^{36}\) \(+(-1.57338 + 2.72517i) q^{37}\) \(+(-0.728163 - 0.154776i) q^{38}\) \(+(-2.56926 + 7.90738i) q^{39}\) \(+(3.96200 - 0.842148i) q^{40}\) \(+(0.726079 - 6.90818i) q^{41}\) \(+(0.736246 - 0.817684i) q^{42}\) \(+(-7.68509 + 3.42162i) q^{43}\) \(+(4.16801 + 1.85572i) q^{44}\) \(+(10.6858 + 11.8677i) q^{45}\) \(+(0.125728 - 0.0913471i) q^{46}\) \(+(6.44144 - 4.67998i) q^{47}\) \(+(-6.33887 - 7.04003i) q^{48}\) \(+(-5.32506 - 2.37087i) q^{49}\) \(+(1.23286 - 0.548905i) q^{50}\) \(+(3.53273 - 3.92349i) q^{51}\) \(+(0.563659 - 5.36285i) q^{52}\) \(+(4.86824 - 1.03478i) q^{53}\) \(+(-0.745029 + 2.29296i) q^{54}\) \(+(7.07105 + 1.50300i) q^{55}\) \(+(-0.737104 + 1.27670i) q^{56}\) \(+(3.06439 + 5.30768i) q^{57}\) \(+(-0.343078 - 1.05588i) q^{58}\) \(+(1.25580 + 11.9481i) q^{59}\) \(+(-13.0595 - 9.48827i) q^{60}\) \(-14.4351 q^{61}\) \(+(-1.45313 + 1.31037i) q^{62}\) \(-5.81225 q^{63}\) \(+(4.19600 + 3.04857i) q^{64}\) \(+(-0.893094 - 8.49722i) q^{65}\) \(+(0.763955 + 2.35121i) q^{66}\) \(+(3.21879 + 5.57511i) q^{67}\) \(+(-1.71208 + 2.96541i) q^{68}\) \(+(-1.25150 - 0.266015i) q^{69}\) \(+(-0.349406 + 1.07536i) q^{70}\) \(+(-1.64121 + 0.348850i) q^{71}\) \(+(0.764860 - 7.27716i) q^{72}\) \(+(9.60883 - 10.6717i) q^{73}\) \(+(1.01026 - 0.449798i) q^{74}\) \(+(-10.1500 - 4.51905i) q^{75}\) \(+(-2.65975 - 2.95395i) q^{76}\) \(+(-2.12856 + 1.54649i) q^{77}\) \(+(2.36388 - 1.71746i) q^{78}\) \(+(-2.30692 - 2.56210i) q^{79}\) \(+(8.89339 + 3.95959i) q^{80}\) \(+(3.41274 - 1.51945i) q^{81}\) \(+(-1.63344 + 1.81412i) q^{82}\) \(+(-1.34357 + 12.7832i) q^{83}\) \(+(5.74674 - 1.22151i) q^{84}\) \(+(-1.67655 + 5.15991i) q^{85}\) \(+(2.89178 + 0.614667i) q^{86}\) \(+(-4.57015 + 7.91573i) q^{87}\) \(+(-1.65616 - 2.86855i) q^{88}\) \(+(0.698188 + 2.14880i) q^{89}\) \(+(-0.586639 - 5.58150i) q^{90}\) \(+(2.51576 + 1.82781i) q^{91}\) \(+0.829816 q^{92}\) \(+(16.0222 + 1.67190i) q^{93}\) \(-2.79812 q^{94}\) \(+(-5.09528 - 3.70194i) q^{95}\) \(+(1.17202 + 11.1510i) q^{96}\) \(+(1.05463 + 3.24582i) q^{97}\) \(+(1.02425 + 1.77405i) q^{98}\) \(+(6.52961 - 11.3096i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.284315 0.206567i −0.201041 0.146065i 0.482710 0.875780i \(-0.339653\pi\)
−0.683751 + 0.729715i \(0.739653\pi\)
\(3\) 0.302431 + 2.87744i 0.174609 + 1.66129i 0.634206 + 0.773164i \(0.281327\pi\)
−0.459597 + 0.888128i \(0.652006\pi\)
\(4\) −0.579869 1.78465i −0.289934 0.892327i
\(5\) −1.48661 2.57489i −0.664834 1.15153i −0.979330 0.202268i \(-0.935169\pi\)
0.314496 0.949259i \(-0.398165\pi\)
\(6\) 0.508398 0.880572i 0.207553 0.359492i
\(7\) 1.05848 + 0.224987i 0.400067 + 0.0850369i 0.403551 0.914957i \(-0.367776\pi\)
−0.00348400 + 0.999994i \(0.501109\pi\)
\(8\) −0.420982 + 1.29565i −0.148840 + 0.458081i
\(9\) −5.25377 + 1.11672i −1.75126 + 0.372241i
\(10\) −0.109221 + 1.03917i −0.0345386 + 0.328613i
\(11\) −1.62690 + 1.80686i −0.490530 + 0.544789i −0.936688 0.350165i \(-0.886125\pi\)
0.446158 + 0.894954i \(0.352792\pi\)
\(12\) 4.95987 2.20827i 1.43179 0.637474i
\(13\) 2.62521 + 1.16882i 0.728103 + 0.324172i 0.737097 0.675787i \(-0.236196\pi\)
−0.00899389 + 0.999960i \(0.502863\pi\)
\(14\) −0.254466 0.282614i −0.0680090 0.0755317i
\(15\) 6.95951 5.05638i 1.79694 1.30555i
\(16\) −2.64890 + 1.92454i −0.662226 + 0.481135i
\(17\) −1.22101 1.35606i −0.296137 0.328894i 0.576653 0.816989i \(-0.304359\pi\)
−0.872790 + 0.488095i \(0.837692\pi\)
\(18\) 1.72440 + 0.767753i 0.406445 + 0.180961i
\(19\) 1.93514 0.861580i 0.443951 0.197660i −0.172571 0.984997i \(-0.555208\pi\)
0.616523 + 0.787337i \(0.288541\pi\)
\(20\) −3.73325 + 4.14619i −0.834780 + 0.927117i
\(21\) −0.327269 + 3.11375i −0.0714159 + 0.679477i
\(22\) 0.835790 0.177653i 0.178191 0.0378757i
\(23\) −0.136652 + 0.420572i −0.0284939 + 0.0876953i −0.964292 0.264841i \(-0.914681\pi\)
0.935798 + 0.352536i \(0.114681\pi\)
\(24\) −3.85547 0.819506i −0.786995 0.167281i
\(25\) −1.92005 + 3.32562i −0.384010 + 0.665124i
\(26\) −0.504947 0.874594i −0.0990283 0.171522i
\(27\) −2.11998 6.52462i −0.407990 1.25566i
\(28\) −0.212256 2.01948i −0.0401126 0.381646i
\(29\) 2.55579 + 1.85689i 0.474599 + 0.344816i 0.799231 0.601024i \(-0.205240\pi\)
−0.324632 + 0.945840i \(0.605240\pi\)
\(30\) −3.02317 −0.551953
\(31\) 1.15354 5.44696i 0.207181 0.978303i
\(32\) 3.87532 0.685067
\(33\) −5.69116 4.13487i −0.990704 0.719789i
\(34\) 0.0670322 + 0.637769i 0.0114959 + 0.109376i
\(35\) −0.994234 3.05994i −0.168056 0.517224i
\(36\) 5.03946 + 8.72860i 0.839910 + 1.45477i
\(37\) −1.57338 + 2.72517i −0.258661 + 0.448015i −0.965884 0.258977i \(-0.916615\pi\)
0.707222 + 0.706991i \(0.249948\pi\)
\(38\) −0.728163 0.154776i −0.118124 0.0251079i
\(39\) −2.56926 + 7.90738i −0.411412 + 1.26619i
\(40\) 3.96200 0.842148i 0.626447 0.133155i
\(41\) 0.726079 6.90818i 0.113395 1.07888i −0.778814 0.627254i \(-0.784179\pi\)
0.892209 0.451623i \(-0.149155\pi\)
\(42\) 0.736246 0.817684i 0.113605 0.126171i
\(43\) −7.68509 + 3.42162i −1.17197 + 0.521793i −0.898021 0.439953i \(-0.854995\pi\)
−0.273944 + 0.961746i \(0.588328\pi\)
\(44\) 4.16801 + 1.85572i 0.628351 + 0.279760i
\(45\) 10.6858 + 11.8677i 1.59294 + 1.76914i
\(46\) 0.125728 0.0913471i 0.0185377 0.0134684i
\(47\) 6.44144 4.67998i 0.939580 0.682645i −0.00873953 0.999962i \(-0.502782\pi\)
0.948320 + 0.317317i \(0.102782\pi\)
\(48\) −6.33887 7.04003i −0.914937 1.01614i
\(49\) −5.32506 2.37087i −0.760723 0.338696i
\(50\) 1.23286 0.548905i 0.174353 0.0776269i
\(51\) 3.53273 3.92349i 0.494681 0.549399i
\(52\) 0.563659 5.36285i 0.0781654 0.743694i
\(53\) 4.86824 1.03478i 0.668704 0.142137i 0.138964 0.990297i \(-0.455623\pi\)
0.529740 + 0.848160i \(0.322289\pi\)
\(54\) −0.745029 + 2.29296i −0.101386 + 0.312033i
\(55\) 7.07105 + 1.50300i 0.953460 + 0.202664i
\(56\) −0.737104 + 1.27670i −0.0984997 + 0.170606i
\(57\) 3.06439 + 5.30768i 0.405889 + 0.703020i
\(58\) −0.343078 1.05588i −0.0450483 0.138644i
\(59\) 1.25580 + 11.9481i 0.163491 + 1.55551i 0.701559 + 0.712612i \(0.252488\pi\)
−0.538068 + 0.842902i \(0.680846\pi\)
\(60\) −13.0595 9.48827i −1.68597 1.22493i
\(61\) −14.4351 −1.84823 −0.924115 0.382115i \(-0.875196\pi\)
−0.924115 + 0.382115i \(0.875196\pi\)
\(62\) −1.45313 + 1.31037i −0.184548 + 0.166417i
\(63\) −5.81225 −0.732274
\(64\) 4.19600 + 3.04857i 0.524499 + 0.381071i
\(65\) −0.893094 8.49722i −0.110775 1.05395i
\(66\) 0.763955 + 2.35121i 0.0940363 + 0.289414i
\(67\) 3.21879 + 5.57511i 0.393238 + 0.681108i 0.992875 0.119164i \(-0.0380215\pi\)
−0.599636 + 0.800273i \(0.704688\pi\)
\(68\) −1.71208 + 2.96541i −0.207620 + 0.359609i
\(69\) −1.25150 0.266015i −0.150663 0.0320244i
\(70\) −0.349406 + 1.07536i −0.0417620 + 0.128530i
\(71\) −1.64121 + 0.348850i −0.194776 + 0.0414009i −0.304266 0.952587i \(-0.598411\pi\)
0.109491 + 0.993988i \(0.465078\pi\)
\(72\) 0.764860 7.27716i 0.0901396 0.857621i
\(73\) 9.60883 10.6717i 1.12463 1.24903i 0.159514 0.987196i \(-0.449007\pi\)
0.965114 0.261830i \(-0.0843261\pi\)
\(74\) 1.01026 0.449798i 0.117441 0.0522880i
\(75\) −10.1500 4.51905i −1.17202 0.521815i
\(76\) −2.65975 2.95395i −0.305094 0.338841i
\(77\) −2.12856 + 1.54649i −0.242572 + 0.176239i
\(78\) 2.36388 1.71746i 0.267657 0.194464i
\(79\) −2.30692 2.56210i −0.259549 0.288259i 0.599260 0.800555i \(-0.295462\pi\)
−0.858809 + 0.512296i \(0.828795\pi\)
\(80\) 8.89339 + 3.95959i 0.994311 + 0.442696i
\(81\) 3.41274 1.51945i 0.379194 0.168828i
\(82\) −1.63344 + 1.81412i −0.180383 + 0.200336i
\(83\) −1.34357 + 12.7832i −0.147476 + 1.40314i 0.631155 + 0.775657i \(0.282581\pi\)
−0.778631 + 0.627482i \(0.784086\pi\)
\(84\) 5.74674 1.22151i 0.627021 0.133277i
\(85\) −1.67655 + 5.15991i −0.181848 + 0.559670i
\(86\) 2.89178 + 0.614667i 0.311829 + 0.0662812i
\(87\) −4.57015 + 7.91573i −0.489972 + 0.848656i
\(88\) −1.65616 2.86855i −0.176547 0.305789i
\(89\) 0.698188 + 2.14880i 0.0740078 + 0.227773i 0.981217 0.192907i \(-0.0617916\pi\)
−0.907209 + 0.420680i \(0.861792\pi\)
\(90\) −0.586639 5.58150i −0.0618372 0.588342i
\(91\) 2.51576 + 1.82781i 0.263724 + 0.191606i
\(92\) 0.829816 0.0865143
\(93\) 16.0222 + 1.67190i 1.66142 + 0.173368i
\(94\) −2.79812 −0.288604
\(95\) −5.09528 3.70194i −0.522765 0.379811i
\(96\) 1.17202 + 11.1510i 0.119619 + 1.13810i
\(97\) 1.05463 + 3.24582i 0.107082 + 0.329563i 0.990213 0.139562i \(-0.0445693\pi\)
−0.883132 + 0.469125i \(0.844569\pi\)
\(98\) 1.02425 + 1.77405i 0.103465 + 0.179207i
\(99\) 6.52961 11.3096i 0.656251 1.13666i
\(100\) 7.04845 + 1.49820i 0.704845 + 0.149820i
\(101\) 5.47495 16.8502i 0.544778 1.67665i −0.176741 0.984257i \(-0.556555\pi\)
0.721518 0.692395i \(-0.243445\pi\)
\(102\) −1.81487 + 0.385763i −0.179699 + 0.0381962i
\(103\) −0.843947 + 8.02962i −0.0831566 + 0.791182i 0.870881 + 0.491494i \(0.163549\pi\)
−0.954037 + 0.299688i \(0.903118\pi\)
\(104\) −2.61955 + 2.90930i −0.256868 + 0.285281i
\(105\) 8.50411 3.78627i 0.829916 0.369502i
\(106\) −1.59786 0.711414i −0.155198 0.0690987i
\(107\) −8.13074 9.03010i −0.786028 0.872972i 0.208438 0.978036i \(-0.433162\pi\)
−0.994466 + 0.105063i \(0.966495\pi\)
\(108\) −10.4149 + 7.56685i −1.00217 + 0.728121i
\(109\) 0.511381 0.371540i 0.0489815 0.0355871i −0.563025 0.826440i \(-0.690363\pi\)
0.612007 + 0.790853i \(0.290363\pi\)
\(110\) −1.69994 1.88797i −0.162082 0.180011i
\(111\) −8.31735 3.70312i −0.789448 0.351485i
\(112\) −3.23680 + 1.44112i −0.305849 + 0.136173i
\(113\) −7.56140 + 8.39779i −0.711317 + 0.789998i −0.985135 0.171784i \(-0.945047\pi\)
0.273818 + 0.961782i \(0.411714\pi\)
\(114\) 0.225139 2.14205i 0.0210862 0.200622i
\(115\) 1.28608 0.273364i 0.119927 0.0254913i
\(116\) 1.83188 5.63796i 0.170086 0.523472i
\(117\) −15.0975 3.20907i −1.39576 0.296679i
\(118\) 2.11104 3.65643i 0.194337 0.336602i
\(119\) −0.987313 1.71008i −0.0905068 0.156762i
\(120\) 3.62146 + 11.1457i 0.330593 + 1.01746i
\(121\) 0.531887 + 5.06056i 0.0483533 + 0.460051i
\(122\) 4.10412 + 2.98182i 0.371570 + 0.269961i
\(123\) 20.0975 1.81213
\(124\) −10.3898 + 1.09986i −0.933034 + 0.0987702i
\(125\) −3.44866 −0.308458
\(126\) 1.65251 + 1.20062i 0.147217 + 0.106960i
\(127\) −0.0123141 0.117161i −0.00109270 0.0103963i 0.993962 0.109725i \(-0.0349971\pi\)
−0.995055 + 0.0993289i \(0.968330\pi\)
\(128\) −2.95833 9.10481i −0.261482 0.804759i
\(129\) −12.1697 21.0786i −1.07149 1.85587i
\(130\) −1.50132 + 2.60037i −0.131675 + 0.228068i
\(131\) −5.65756 1.20255i −0.494303 0.105067i −0.0459863 0.998942i \(-0.514643\pi\)
−0.448317 + 0.893875i \(0.647976\pi\)
\(132\) −4.07918 + 12.5544i −0.355047 + 1.09272i
\(133\) 2.24215 0.476583i 0.194419 0.0413250i
\(134\) 0.236483 2.24998i 0.0204290 0.194369i
\(135\) −13.6486 + 15.1583i −1.17469 + 1.30462i
\(136\) 2.27101 1.01112i 0.194737 0.0867026i
\(137\) 10.7848 + 4.80170i 0.921407 + 0.410237i 0.811931 0.583753i \(-0.198416\pi\)
0.109475 + 0.993990i \(0.465083\pi\)
\(138\) 0.300870 + 0.334150i 0.0256118 + 0.0284448i
\(139\) 12.4767 9.06482i 1.05826 0.768868i 0.0844915 0.996424i \(-0.473073\pi\)
0.973765 + 0.227556i \(0.0730734\pi\)
\(140\) −4.88440 + 3.54873i −0.412807 + 0.299922i
\(141\) 15.4145 + 17.1195i 1.29813 + 1.44172i
\(142\) 0.538681 + 0.239836i 0.0452051 + 0.0201266i
\(143\) −6.38286 + 2.84183i −0.533762 + 0.237646i
\(144\) 11.7675 13.0692i 0.980628 1.08910i
\(145\) 0.981819 9.34138i 0.0815356 0.775759i
\(146\) −4.93635 + 1.04925i −0.408535 + 0.0868368i
\(147\) 5.21157 16.0396i 0.429843 1.32292i
\(148\) 5.77583 + 1.22769i 0.474770 + 0.100916i
\(149\) 5.97511 10.3492i 0.489500 0.847840i −0.510427 0.859921i \(-0.670512\pi\)
0.999927 + 0.0120817i \(0.00384583\pi\)
\(150\) 1.95230 + 3.38148i 0.159404 + 0.276097i
\(151\) −1.33561 4.11059i −0.108691 0.334515i 0.881888 0.471458i \(-0.156272\pi\)
−0.990579 + 0.136943i \(0.956272\pi\)
\(152\) 0.301646 + 2.86997i 0.0244667 + 0.232785i
\(153\) 7.92923 + 5.76092i 0.641040 + 0.465743i
\(154\) 0.924636 0.0745093
\(155\) −15.7402 + 5.12730i −1.26428 + 0.411834i
\(156\) 15.6018 1.24914
\(157\) 7.04204 + 5.11634i 0.562016 + 0.408328i 0.832196 0.554481i \(-0.187083\pi\)
−0.270180 + 0.962810i \(0.587083\pi\)
\(158\) 0.126648 + 1.20498i 0.0100756 + 0.0958628i
\(159\) 4.44982 + 13.6951i 0.352893 + 1.08609i
\(160\) −5.76111 9.97854i −0.455456 0.788873i
\(161\) −0.239267 + 0.414422i −0.0188568 + 0.0326610i
\(162\) −1.28416 0.272957i −0.100893 0.0214455i
\(163\) 0.966575 2.97481i 0.0757080 0.233005i −0.906040 0.423192i \(-0.860909\pi\)
0.981748 + 0.190187i \(0.0609095\pi\)
\(164\) −12.7497 + 2.71004i −0.995588 + 0.211619i
\(165\) −2.18628 + 20.8011i −0.170202 + 1.61936i
\(166\) 3.02258 3.35692i 0.234598 0.260547i
\(167\) −12.2003 + 5.43194i −0.944090 + 0.420336i −0.820275 0.571969i \(-0.806180\pi\)
−0.123815 + 0.992305i \(0.539513\pi\)
\(168\) −3.89656 1.73486i −0.300626 0.133847i
\(169\) −3.17310 3.52408i −0.244085 0.271083i
\(170\) 1.54253 1.12072i 0.118307 0.0859551i
\(171\) −9.20462 + 6.68755i −0.703895 + 0.511410i
\(172\) 10.5628 + 11.7311i 0.805402 + 0.894490i
\(173\) 17.3982 + 7.74619i 1.32276 + 0.588932i 0.941960 0.335724i \(-0.108981\pi\)
0.380803 + 0.924656i \(0.375648\pi\)
\(174\) 2.93449 1.30652i 0.222463 0.0990469i
\(175\) −2.78055 + 3.08811i −0.210190 + 0.233439i
\(176\) 0.832136 7.91724i 0.0627246 0.596785i
\(177\) −34.0002 + 7.22697i −2.55561 + 0.543213i
\(178\) 0.245366 0.755159i 0.0183910 0.0566016i
\(179\) 0.0775964 + 0.0164936i 0.00579983 + 0.00123279i 0.210811 0.977527i \(-0.432390\pi\)
−0.205011 + 0.978760i \(0.565723\pi\)
\(180\) 14.9835 25.9521i 1.11680 1.93436i
\(181\) −1.08143 1.87308i −0.0803817 0.139225i 0.823032 0.567995i \(-0.192281\pi\)
−0.903414 + 0.428769i \(0.858947\pi\)
\(182\) −0.337704 1.03935i −0.0250323 0.0770415i
\(183\) −4.36564 41.5363i −0.322717 3.07045i
\(184\) −0.487386 0.354107i −0.0359306 0.0261051i
\(185\) 9.35601 0.687868
\(186\) −4.20998 3.78500i −0.308691 0.277529i
\(187\) 4.43668 0.324442
\(188\) −12.0873 8.78195i −0.881559 0.640490i
\(189\) −0.776000 7.38314i −0.0564457 0.537045i
\(190\) 0.683966 + 2.10503i 0.0496201 + 0.152715i
\(191\) 2.67085 + 4.62604i 0.193256 + 0.334729i 0.946327 0.323210i \(-0.104762\pi\)
−0.753072 + 0.657939i \(0.771429\pi\)
\(192\) −7.50308 + 12.9957i −0.541488 + 0.937885i
\(193\) 2.08705 + 0.443616i 0.150229 + 0.0319322i 0.282412 0.959293i \(-0.408865\pi\)
−0.132183 + 0.991225i \(0.542199\pi\)
\(194\) 0.370632 1.14069i 0.0266098 0.0818966i
\(195\) 24.1802 5.13965i 1.73158 0.368058i
\(196\) −1.14334 + 10.8782i −0.0816673 + 0.777013i
\(197\) −3.93163 + 4.36652i −0.280117 + 0.311102i −0.866742 0.498758i \(-0.833790\pi\)
0.586624 + 0.809859i \(0.300456\pi\)
\(198\) −4.19266 + 1.86669i −0.297959 + 0.132660i
\(199\) 6.32901 + 2.81786i 0.448652 + 0.199753i 0.618609 0.785699i \(-0.287696\pi\)
−0.169958 + 0.985451i \(0.554363\pi\)
\(200\) −3.50053 3.88773i −0.247525 0.274904i
\(201\) −15.0686 + 10.9480i −1.06286 + 0.772211i
\(202\) −5.03729 + 3.65981i −0.354423 + 0.257503i
\(203\) 2.28748 + 2.54050i 0.160549 + 0.178308i
\(204\) −9.05059 4.02958i −0.633668 0.282127i
\(205\) −18.8672 + 8.40023i −1.31774 + 0.586698i
\(206\) 1.89860 2.10861i 0.132282 0.146914i
\(207\) 0.248276 2.36219i 0.0172564 0.164184i
\(208\) −9.20337 + 1.95624i −0.638139 + 0.135641i
\(209\) −1.59153 + 4.89823i −0.110089 + 0.338818i
\(210\) −3.19996 0.680173i −0.220818 0.0469364i
\(211\) −8.35437 + 14.4702i −0.575139 + 0.996170i 0.420888 + 0.907113i \(0.361719\pi\)
−0.996027 + 0.0890568i \(0.971615\pi\)
\(212\) −4.66966 8.08808i −0.320713 0.555492i
\(213\) −1.50015 4.61698i −0.102788 0.316350i
\(214\) 0.446370 + 4.24693i 0.0305133 + 0.290314i
\(215\) 20.2351 + 14.7016i 1.38002 + 1.00264i
\(216\) 9.34610 0.635921
\(217\) 2.44649 5.50596i 0.166078 0.373769i
\(218\) −0.222141 −0.0150453
\(219\) 33.6132 + 24.4214i 2.27137 + 1.65024i
\(220\) −1.41795 13.4909i −0.0955983 0.909557i
\(221\) −1.62040 4.98709i −0.109000 0.335468i
\(222\) 1.59980 + 2.77094i 0.107372 + 0.185973i
\(223\) 3.13078 5.42267i 0.209653 0.363129i −0.741952 0.670453i \(-0.766100\pi\)
0.951605 + 0.307323i \(0.0994333\pi\)
\(224\) 4.10195 + 0.871895i 0.274073 + 0.0582560i
\(225\) 6.37369 19.6162i 0.424912 1.30775i
\(226\) 3.88452 0.825681i 0.258395 0.0549235i
\(227\) 0.820289 7.80452i 0.0544445 0.518004i −0.932982 0.359924i \(-0.882803\pi\)
0.987426 0.158081i \(-0.0505306\pi\)
\(228\) 7.69543 8.54664i 0.509642 0.566015i
\(229\) 11.6687 5.19524i 0.771089 0.343311i 0.0168049 0.999859i \(-0.494651\pi\)
0.754285 + 0.656548i \(0.227984\pi\)
\(230\) −0.422119 0.187939i −0.0278337 0.0123924i
\(231\) −5.09368 5.65711i −0.335140 0.372210i
\(232\) −3.48183 + 2.52969i −0.228593 + 0.166083i
\(233\) −10.2887 + 7.47514i −0.674032 + 0.489713i −0.871373 0.490622i \(-0.836770\pi\)
0.197340 + 0.980335i \(0.436770\pi\)
\(234\) 3.62955 + 4.03103i 0.237271 + 0.263517i
\(235\) −21.6264 9.62868i −1.41075 0.628106i
\(236\) 20.5951 9.16951i 1.34062 0.596884i
\(237\) 6.67460 7.41290i 0.433562 0.481520i
\(238\) −0.0725373 + 0.690146i −0.00470189 + 0.0447355i
\(239\) 24.8690 5.28607i 1.60864 0.341928i 0.686006 0.727596i \(-0.259362\pi\)
0.922638 + 0.385668i \(0.126029\pi\)
\(240\) −8.70385 + 26.7877i −0.561831 + 1.72914i
\(241\) −2.30939 0.490876i −0.148761 0.0316201i 0.132929 0.991126i \(-0.457562\pi\)
−0.281690 + 0.959505i \(0.590895\pi\)
\(242\) 0.894121 1.54866i 0.0574763 0.0995519i
\(243\) −4.88634 8.46339i −0.313459 0.542927i
\(244\) 8.37048 + 25.7617i 0.535865 + 1.64922i
\(245\) 1.81158 + 17.2360i 0.115738 + 1.10117i
\(246\) −5.71401 4.15147i −0.364312 0.264688i
\(247\) 6.08718 0.387318
\(248\) 6.57173 + 3.78765i 0.417305 + 0.240516i
\(249\) −37.1893 −2.35677
\(250\) 0.980506 + 0.712379i 0.0620126 + 0.0450548i
\(251\) −0.246336 2.34373i −0.0155486 0.147935i 0.983993 0.178206i \(-0.0570294\pi\)
−0.999542 + 0.0302716i \(0.990363\pi\)
\(252\) 3.37034 + 10.3728i 0.212312 + 0.653428i
\(253\) −0.537595 0.931142i −0.0337983 0.0585404i
\(254\) −0.0207005 + 0.0358542i −0.00129886 + 0.00224970i
\(255\) −15.3544 3.26367i −0.961528 0.204379i
\(256\) 2.16580 6.66565i 0.135363 0.416603i
\(257\) 25.4455 5.40862i 1.58725 0.337380i 0.672089 0.740470i \(-0.265397\pi\)
0.915160 + 0.403090i \(0.132064\pi\)
\(258\) −0.894103 + 8.50682i −0.0556644 + 0.529612i
\(259\) −2.27851 + 2.53054i −0.141580 + 0.157240i
\(260\) −14.6467 + 6.52114i −0.908351 + 0.404424i
\(261\) −15.5012 6.90157i −0.959499 0.427196i
\(262\) 1.36012 + 1.51057i 0.0840285 + 0.0933232i
\(263\) −18.5552 + 13.4812i −1.14417 + 0.831285i −0.987694 0.156398i \(-0.950012\pi\)
−0.156471 + 0.987683i \(0.550012\pi\)
\(264\) 7.75322 5.63304i 0.477178 0.346690i
\(265\) −9.90163 10.9969i −0.608253 0.675533i
\(266\) −0.735922 0.327654i −0.0451223 0.0200897i
\(267\) −5.97190 + 2.65886i −0.365474 + 0.162720i
\(268\) 8.08316 8.97726i 0.493758 0.548374i
\(269\) 1.78193 16.9539i 0.108646 1.03370i −0.795347 0.606154i \(-0.792712\pi\)
0.903994 0.427546i \(-0.140622\pi\)
\(270\) 7.01171 1.49038i 0.426719 0.0907019i
\(271\) 2.23929 6.89184i 0.136027 0.418649i −0.859721 0.510764i \(-0.829363\pi\)
0.995748 + 0.0921146i \(0.0293626\pi\)
\(272\) 5.84413 + 1.24221i 0.354352 + 0.0753199i
\(273\) −4.49857 + 7.79175i −0.272266 + 0.471578i
\(274\) −2.07440 3.59297i −0.125319 0.217059i
\(275\) −2.88520 8.87972i −0.173984 0.535467i
\(276\) 0.250962 + 2.38775i 0.0151062 + 0.143725i
\(277\) −12.2188 8.87748i −0.734157 0.533396i 0.156719 0.987643i \(-0.449908\pi\)
−0.890876 + 0.454247i \(0.849908\pi\)
\(278\) −5.41979 −0.325058
\(279\) 0.0223278 + 29.9052i 0.00133673 + 1.79038i
\(280\) 4.38316 0.261944
\(281\) 2.01209 + 1.46187i 0.120031 + 0.0872078i 0.646181 0.763184i \(-0.276365\pi\)
−0.526150 + 0.850392i \(0.676365\pi\)
\(282\) −0.846240 8.05144i −0.0503929 0.479456i
\(283\) −1.46052 4.49503i −0.0868192 0.267202i 0.898216 0.439554i \(-0.144863\pi\)
−0.985035 + 0.172352i \(0.944863\pi\)
\(284\) 1.57426 + 2.72670i 0.0934153 + 0.161800i
\(285\) 9.11114 15.7810i 0.539697 0.934783i
\(286\) 2.40177 + 0.510512i 0.142020 + 0.0301872i
\(287\) 2.32279 7.14881i 0.137110 0.421981i
\(288\) −20.3600 + 4.32766i −1.19973 + 0.255010i
\(289\) 1.42893 13.5953i 0.0840546 0.799726i
\(290\) −2.20877 + 2.45308i −0.129703 + 0.144050i
\(291\) −9.02071 + 4.01628i −0.528804 + 0.235439i
\(292\) −24.6171 10.9602i −1.44061 0.641400i
\(293\) −7.05858 7.83935i −0.412367 0.457980i 0.500802 0.865562i \(-0.333039\pi\)
−0.913169 + 0.407582i \(0.866372\pi\)
\(294\) −4.79497 + 3.48375i −0.279648 + 0.203177i
\(295\) 28.8982 20.9958i 1.68252 1.22242i
\(296\) −2.86850 3.18579i −0.166728 0.185170i
\(297\) 15.2381 + 6.78443i 0.884203 + 0.393673i
\(298\) −3.83662 + 1.70817i −0.222249 + 0.0989517i
\(299\) −0.850314 + 0.944369i −0.0491749 + 0.0546143i
\(300\) −2.17930 + 20.7346i −0.125822 + 1.19711i
\(301\) −8.90432 + 1.89267i −0.513237 + 0.109092i
\(302\) −0.469377 + 1.44459i −0.0270096 + 0.0831271i
\(303\) 50.1411 + 10.6578i 2.88053 + 0.612276i
\(304\) −3.46785 + 6.00650i −0.198895 + 0.344496i
\(305\) 21.4595 + 37.1689i 1.22877 + 2.12829i
\(306\) −1.06438 3.27583i −0.0608467 0.187267i
\(307\) −0.276844 2.63399i −0.0158003 0.150330i 0.983777 0.179394i \(-0.0574138\pi\)
−0.999578 + 0.0290645i \(0.990747\pi\)
\(308\) 3.99424 + 2.90198i 0.227593 + 0.165356i
\(309\) −23.3600 −1.32890
\(310\) 5.53430 + 1.79364i 0.314327 + 0.101872i
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) −9.16358 6.65773i −0.518786 0.376920i
\(313\) 2.78834 + 26.5293i 0.157607 + 1.49953i 0.732201 + 0.681088i \(0.238493\pi\)
−0.574595 + 0.818438i \(0.694840\pi\)
\(314\) −0.945290 2.90930i −0.0533458 0.164181i
\(315\) 8.64057 + 14.9659i 0.486841 + 0.843234i
\(316\) −3.23474 + 5.60274i −0.181969 + 0.315179i
\(317\) −10.5055 2.23302i −0.590050 0.125419i −0.0967957 0.995304i \(-0.530859\pi\)
−0.493254 + 0.869885i \(0.664193\pi\)
\(318\) 1.56381 4.81291i 0.0876941 0.269895i
\(319\) −7.51318 + 1.59698i −0.420657 + 0.0894135i
\(320\) 1.61191 15.3363i 0.0901084 0.857324i
\(321\) 23.5246 26.1267i 1.31301 1.45825i
\(322\) 0.153633 0.0684017i 0.00856162 0.00381188i
\(323\) −3.53117 1.57218i −0.196480 0.0874784i
\(324\) −4.69064 5.20948i −0.260591 0.289416i
\(325\) −8.92758 + 6.48627i −0.495213 + 0.359793i
\(326\) −0.889309 + 0.646121i −0.0492543 + 0.0357853i
\(327\) 1.22374 + 1.35911i 0.0676732 + 0.0751587i
\(328\) 8.64492 + 3.84897i 0.477336 + 0.212524i
\(329\) 7.87106 3.50442i 0.433945 0.193205i
\(330\) 4.91841 5.46245i 0.270750 0.300698i
\(331\) −2.05373 + 19.5400i −0.112883 + 1.07401i 0.780635 + 0.624987i \(0.214896\pi\)
−0.893518 + 0.449027i \(0.851771\pi\)
\(332\) 23.5927 5.01478i 1.29482 0.275222i
\(333\) 5.22289 16.0744i 0.286213 0.880872i
\(334\) 4.59080 + 0.975804i 0.251197 + 0.0533936i
\(335\) 9.57021 16.5761i 0.522876 0.905649i
\(336\) −5.12565 8.87788i −0.279627 0.484328i
\(337\) 5.92655 + 18.2401i 0.322840 + 0.993599i 0.972406 + 0.233294i \(0.0749505\pi\)
−0.649566 + 0.760305i \(0.725050\pi\)
\(338\) 0.174200 + 1.65741i 0.00947525 + 0.0901510i
\(339\) −26.4510 19.2178i −1.43662 1.04376i
\(340\) 10.1808 0.552133
\(341\) 7.96520 + 10.9460i 0.431340 + 0.592757i
\(342\) 3.99844 0.216211
\(343\) −11.2313 8.15999i −0.606431 0.440598i
\(344\) −1.19794 11.3976i −0.0645885 0.614519i
\(345\) 1.17554 + 3.61794i 0.0632889 + 0.194783i
\(346\) −3.34647 5.79626i −0.179907 0.311609i
\(347\) −5.32998 + 9.23180i −0.286128 + 0.495589i −0.972882 0.231301i \(-0.925702\pi\)
0.686754 + 0.726890i \(0.259035\pi\)
\(348\) 16.7769 + 3.56605i 0.899338 + 0.191160i
\(349\) −5.77910 + 17.7862i −0.309348 + 0.952075i 0.668671 + 0.743559i \(0.266864\pi\)
−0.978019 + 0.208517i \(0.933136\pi\)
\(350\) 1.42845 0.303627i 0.0763540 0.0162296i
\(351\) 2.06072 19.6064i 0.109993 1.04651i
\(352\) −6.30478 + 7.00216i −0.336046 + 0.373217i
\(353\) −11.5675 + 5.15020i −0.615678 + 0.274117i −0.690787 0.723058i \(-0.742736\pi\)
0.0751097 + 0.997175i \(0.476069\pi\)
\(354\) 11.1596 + 4.96859i 0.593127 + 0.264077i
\(355\) 3.33810 + 3.70733i 0.177168 + 0.196765i
\(356\) 3.43001 2.49205i 0.181790 0.132078i
\(357\) 4.62205 3.35812i 0.244625 0.177730i
\(358\) −0.0186548 0.0207182i −0.000985936 0.00109499i
\(359\) −20.7175 9.22402i −1.09343 0.486825i −0.220853 0.975307i \(-0.570884\pi\)
−0.872574 + 0.488482i \(0.837551\pi\)
\(360\) −19.8750 + 8.84890i −1.04750 + 0.466378i
\(361\) −9.71104 + 10.7852i −0.511107 + 0.567642i
\(362\) −0.0794517 + 0.755932i −0.00417589 + 0.0397309i
\(363\) −14.4006 + 3.06095i −0.755837 + 0.160658i
\(364\) 1.80319 5.54965i 0.0945129 0.290881i
\(365\) −41.7631 8.87701i −2.18598 0.464644i
\(366\) −7.33880 + 12.7112i −0.383605 + 0.664424i
\(367\) −4.35984 7.55147i −0.227582 0.394183i 0.729509 0.683971i \(-0.239749\pi\)
−0.957091 + 0.289788i \(0.906415\pi\)
\(368\) −0.447430 1.37705i −0.0233239 0.0717836i
\(369\) 3.89987 + 37.1048i 0.203019 + 1.93160i
\(370\) −2.66005 1.93264i −0.138290 0.100473i
\(371\) 5.38574 0.279614
\(372\) −6.30699 29.5635i −0.327002 1.53280i
\(373\) 25.4134 1.31586 0.657928 0.753081i \(-0.271433\pi\)
0.657928 + 0.753081i \(0.271433\pi\)
\(374\) −1.26141 0.916471i −0.0652262 0.0473896i
\(375\) −1.04298 9.92333i −0.0538594 0.512438i
\(376\) 3.35188 + 10.3160i 0.172860 + 0.532009i
\(377\) 4.53913 + 7.86200i 0.233777 + 0.404914i
\(378\) −1.30448 + 2.25943i −0.0670954 + 0.116213i
\(379\) −21.6150 4.59441i −1.11029 0.235999i −0.383961 0.923349i \(-0.625440\pi\)
−0.726326 + 0.687350i \(0.758774\pi\)
\(380\) −3.65208 + 11.2399i −0.187348 + 0.576597i
\(381\) 0.333399 0.0708662i 0.0170806 0.00363059i
\(382\) 0.196226 1.86696i 0.0100398 0.0955220i
\(383\) −17.8274 + 19.7993i −0.910938 + 1.01170i 0.0889398 + 0.996037i \(0.471652\pi\)
−0.999877 + 0.0156617i \(0.995015\pi\)
\(384\) 25.3039 11.2660i 1.29128 0.574916i
\(385\) 7.14640 + 3.18178i 0.364214 + 0.162159i
\(386\) −0.501743 0.557242i −0.0255380 0.0283629i
\(387\) 36.5547 26.5585i 1.85818 1.35005i
\(388\) 5.18112 3.76430i 0.263032 0.191104i
\(389\) −8.66862 9.62748i −0.439517 0.488133i 0.482165 0.876081i \(-0.339851\pi\)
−0.921681 + 0.387948i \(0.873184\pi\)
\(390\) −7.93646 3.53354i −0.401878 0.178928i
\(391\) 0.737176 0.328212i 0.0372806 0.0165984i
\(392\) 5.31357 5.90132i 0.268376 0.298062i
\(393\) 1.74925 16.6430i 0.0882379 0.839528i
\(394\) 2.01980 0.429321i 0.101756 0.0216289i
\(395\) −3.16762 + 9.74894i −0.159380 + 0.490522i
\(396\) −23.9701 5.09500i −1.20454 0.256033i
\(397\) 1.46363 2.53508i 0.0734574 0.127232i −0.826957 0.562265i \(-0.809930\pi\)
0.900414 + 0.435033i \(0.143263\pi\)
\(398\) −1.21736 2.10852i −0.0610205 0.105691i
\(399\) 2.04944 + 6.30752i 0.102600 + 0.315771i
\(400\) −1.31427 12.5045i −0.0657136 0.625223i
\(401\) 9.93025 + 7.21475i 0.495893 + 0.360287i 0.807446 0.589942i \(-0.200849\pi\)
−0.311553 + 0.950229i \(0.600849\pi\)
\(402\) 6.54572 0.326471
\(403\) 9.39479 12.9511i 0.467988 0.645142i
\(404\) −33.2464 −1.65407
\(405\) −8.98586 6.52861i −0.446511 0.324409i
\(406\) −0.125581 1.19482i −0.00623246 0.0592979i
\(407\) −2.36426 7.27645i −0.117192 0.360680i
\(408\) 3.59625 + 6.22889i 0.178041 + 0.308376i
\(409\) 8.59861 14.8932i 0.425174 0.736423i −0.571263 0.820767i \(-0.693546\pi\)
0.996437 + 0.0843442i \(0.0268795\pi\)
\(410\) 7.09944 + 1.50903i 0.350617 + 0.0745258i
\(411\) −10.5549 + 32.4848i −0.520637 + 1.60236i
\(412\) 14.8195 3.14997i 0.730102 0.155188i
\(413\) −1.35893 + 12.9294i −0.0668687 + 0.636213i
\(414\) −0.558539 + 0.620320i −0.0274507 + 0.0304871i
\(415\) 34.9127 15.5442i 1.71380 0.763032i
\(416\) 10.1735 + 4.52955i 0.498799 + 0.222080i
\(417\) 29.8568 + 33.1594i 1.46210 + 1.62382i
\(418\) 1.46431 1.06388i 0.0716217 0.0520362i
\(419\) −18.7251 + 13.6046i −0.914782 + 0.664628i −0.942220 0.334996i \(-0.891265\pi\)
0.0274378 + 0.999624i \(0.491265\pi\)
\(420\) −11.6884 12.9813i −0.570338 0.633424i
\(421\) 26.6593 + 11.8695i 1.29929 + 0.578483i 0.935609 0.353038i \(-0.114851\pi\)
0.363686 + 0.931522i \(0.381518\pi\)
\(422\) 5.36434 2.38836i 0.261132 0.116263i
\(423\) −28.6156 + 31.7808i −1.39134 + 1.54524i
\(424\) −0.708734 + 6.74315i −0.0344192 + 0.327476i
\(425\) 6.85415 1.45689i 0.332475 0.0706697i
\(426\) −0.527201 + 1.62256i −0.0255430 + 0.0786132i
\(427\) −15.2793 3.24771i −0.739416 0.157168i
\(428\) −11.4008 + 19.7468i −0.551080 + 0.954498i
\(429\) −10.1076 17.5069i −0.487999 0.845239i
\(430\) −2.71626 8.35979i −0.130990 0.403145i
\(431\) −3.17267 30.1859i −0.152822 1.45401i −0.755042 0.655676i \(-0.772384\pi\)
0.602220 0.798330i \(-0.294283\pi\)
\(432\) 18.1725 + 13.2031i 0.874326 + 0.635235i
\(433\) −13.8400 −0.665107 −0.332553 0.943084i \(-0.607910\pi\)
−0.332553 + 0.943084i \(0.607910\pi\)
\(434\) −1.83292 + 1.06006i −0.0879830 + 0.0508846i
\(435\) 27.1762 1.30300
\(436\) −0.959605 0.697194i −0.0459567 0.0333895i
\(437\) 0.0979154 + 0.931602i 0.00468393 + 0.0445646i
\(438\) −4.51207 13.8867i −0.215595 0.663534i
\(439\) −6.46006 11.1892i −0.308322 0.534029i 0.669674 0.742656i \(-0.266434\pi\)
−0.977995 + 0.208626i \(0.933101\pi\)
\(440\) −4.92414 + 8.52887i −0.234749 + 0.406598i
\(441\) 30.6242 + 6.50938i 1.45830 + 0.309970i
\(442\) −0.569463 + 1.75263i −0.0270866 + 0.0833639i
\(443\) −23.2391 + 4.93962i −1.10412 + 0.234688i −0.723693 0.690122i \(-0.757557\pi\)
−0.380429 + 0.924810i \(0.624224\pi\)
\(444\) −1.78582 + 16.9909i −0.0847511 + 0.806353i
\(445\) 4.49500 4.99220i 0.213083 0.236653i
\(446\) −2.01027 + 0.895031i −0.0951892 + 0.0423809i
\(447\) 31.5863 + 14.0631i 1.49398 + 0.665163i
\(448\) 3.75549 + 4.17089i 0.177430 + 0.197056i
\(449\) 15.7054 11.4106i 0.741181 0.538500i −0.151900 0.988396i \(-0.548539\pi\)
0.893081 + 0.449896i \(0.148539\pi\)
\(450\) −5.86419 + 4.26058i −0.276440 + 0.200846i
\(451\) 11.3009 + 12.5509i 0.532137 + 0.590998i
\(452\) 19.3718 + 8.62487i 0.911171 + 0.405680i
\(453\) 11.4241 5.08632i 0.536749 0.238976i
\(454\) −1.84538 + 2.04950i −0.0866078 + 0.0961877i
\(455\) 0.966440 9.19507i 0.0453074 0.431071i
\(456\) −8.16695 + 1.73594i −0.382452 + 0.0812928i
\(457\) 7.52208 23.1506i 0.351868 1.08294i −0.605935 0.795514i \(-0.707201\pi\)
0.957803 0.287424i \(-0.0927990\pi\)
\(458\) −4.39075 0.933283i −0.205166 0.0436094i
\(459\) −6.25931 + 10.8414i −0.292159 + 0.506035i
\(460\) −1.23362 2.13669i −0.0575177 0.0996235i
\(461\) −11.8487 36.4665i −0.551848 1.69841i −0.704126 0.710075i \(-0.748661\pi\)
0.152279 0.988338i \(-0.451339\pi\)
\(462\) 0.279639 + 2.66059i 0.0130100 + 0.123782i
\(463\) 5.33489 + 3.87603i 0.247934 + 0.180134i 0.704810 0.709396i \(-0.251032\pi\)
−0.456877 + 0.889530i \(0.651032\pi\)
\(464\) −10.3437 −0.480195
\(465\) −19.5138 43.7409i −0.904932 2.02843i
\(466\) 4.46933 0.207038
\(467\) −31.0674 22.5718i −1.43763 1.04450i −0.988532 0.151014i \(-0.951746\pi\)
−0.449096 0.893484i \(-0.648254\pi\)
\(468\) 3.02749 + 28.8046i 0.139946 + 1.33149i
\(469\) 2.15270 + 6.62532i 0.0994024 + 0.305929i
\(470\) 4.15973 + 7.20487i 0.191874 + 0.332336i
\(471\) −12.5922 + 21.8104i −0.580220 + 1.00497i
\(472\) −16.0092 3.40287i −0.736885 0.156630i
\(473\) 6.32051 19.4525i 0.290617 0.894429i
\(474\) −3.42895 + 0.728845i −0.157497 + 0.0334770i
\(475\) −0.850274 + 8.08981i −0.0390132 + 0.371186i
\(476\) −2.47938 + 2.75363i −0.113642 + 0.126212i
\(477\) −24.4210 + 10.8729i −1.11816 + 0.497838i
\(478\) −8.16256 3.63421i −0.373347 0.166225i
\(479\) 5.03531 + 5.59228i 0.230069 + 0.255518i 0.847115 0.531409i \(-0.178337\pi\)
−0.617046 + 0.786927i \(0.711671\pi\)
\(480\) 26.9703 19.5951i 1.23102 0.894389i
\(481\) −7.31567 + 5.31515i −0.333566 + 0.242350i
\(482\) 0.555195 + 0.616606i 0.0252884 + 0.0280856i
\(483\) −1.26484 0.563141i −0.0575520 0.0256238i
\(484\) 8.72293 3.88370i 0.396497 0.176532i
\(485\) 6.78981 7.54085i 0.308310 0.342412i
\(486\) −0.358996 + 3.41562i −0.0162844 + 0.154936i
\(487\) −24.4852 + 5.20450i −1.10953 + 0.235838i −0.726004 0.687691i \(-0.758625\pi\)
−0.383528 + 0.923529i \(0.625291\pi\)
\(488\) 6.07693 18.7029i 0.275090 0.846639i
\(489\) 8.85217 + 1.88159i 0.400309 + 0.0850883i
\(490\) 3.04533 5.27467i 0.137574 0.238285i
\(491\) 19.8550 + 34.3899i 0.896044 + 1.55199i 0.832507 + 0.554015i \(0.186905\pi\)
0.0635377 + 0.997979i \(0.479762\pi\)
\(492\) −11.6539 35.8670i −0.525399 1.61701i
\(493\) −0.602573 5.73310i −0.0271385 0.258206i
\(494\) −1.73068 1.25741i −0.0778668 0.0565735i
\(495\) −38.8281 −1.74519
\(496\) 7.42729 + 16.6485i 0.333495 + 0.747539i
\(497\) −1.81567 −0.0814440
\(498\) 10.5735 + 7.68207i 0.473808 + 0.344242i
\(499\) 2.47252 + 23.5245i 0.110685 + 1.05310i 0.899036 + 0.437875i \(0.144269\pi\)
−0.788351 + 0.615226i \(0.789065\pi\)
\(500\) 1.99977 + 6.15467i 0.0894325 + 0.275245i
\(501\) −19.3199 33.4630i −0.863148 1.49502i
\(502\) −0.414099 + 0.717241i −0.0184822 + 0.0320120i
\(503\) 19.7453 + 4.19699i 0.880400 + 0.187135i 0.625867 0.779930i \(-0.284745\pi\)
0.254532 + 0.967064i \(0.418078\pi\)
\(504\) 2.44685 7.53063i 0.108991 0.335441i
\(505\) −51.5265 + 10.9523i −2.29290 + 0.487370i
\(506\) −0.0394968 + 0.375787i −0.00175585 + 0.0167058i
\(507\) 9.18070 10.1962i 0.407729 0.452829i
\(508\) −0.201951 + 0.0899143i −0.00896012 + 0.00398930i
\(509\) 10.8155 + 4.81536i 0.479387 + 0.213437i 0.632180 0.774821i \(-0.282160\pi\)
−0.152793 + 0.988258i \(0.548827\pi\)
\(510\) 3.69131 + 4.09961i 0.163454 + 0.181534i
\(511\) 12.5717 9.13389i 0.556140 0.404060i
\(512\) −17.4827 + 12.7019i −0.772633 + 0.561351i
\(513\) −9.72394 10.7995i −0.429322 0.476811i
\(514\) −8.35179 3.71845i −0.368381 0.164014i
\(515\) 21.9300 9.76388i 0.966352 0.430248i
\(516\) −30.5611 + 33.9416i −1.34538 + 1.49419i
\(517\) −2.02354 + 19.2526i −0.0889950 + 0.846731i
\(518\) 1.17054 0.248806i 0.0514306 0.0109319i
\(519\) −17.0275 + 52.4051i −0.747422 + 2.30033i
\(520\) 11.3854 + 2.42004i 0.499283 + 0.106126i
\(521\) 16.3742 28.3610i 0.717368 1.24252i −0.244672 0.969606i \(-0.578680\pi\)
0.962039 0.272911i \(-0.0879865\pi\)
\(522\) 2.98158 + 5.16425i 0.130500 + 0.226033i
\(523\) −9.11682 28.0587i −0.398651 1.22692i −0.926082 0.377323i \(-0.876845\pi\)
0.527431 0.849598i \(-0.323155\pi\)
\(524\) 1.13451 + 10.7941i 0.0495611 + 0.471543i
\(525\) −9.72679 7.06693i −0.424512 0.308426i
\(526\) 8.06030 0.351446
\(527\) −8.79490 + 5.08650i −0.383112 + 0.221571i
\(528\) 23.0331 1.00239
\(529\) 18.4492 + 13.4041i 0.802138 + 0.582788i
\(530\) 0.543591 + 5.17193i 0.0236121 + 0.224654i
\(531\) −19.9404 61.3703i −0.865340 2.66324i
\(532\) −2.15069 3.72510i −0.0932441 0.161504i
\(533\) 9.98053 17.2868i 0.432305 0.748774i
\(534\) 2.24713 + 0.477643i 0.0972430 + 0.0206696i
\(535\) −11.1643 + 34.3600i −0.482673 + 1.48551i
\(536\) −8.57845 + 1.82340i −0.370532 + 0.0787591i
\(537\) −0.0239919 + 0.228267i −0.00103533 + 0.00985047i
\(538\) −4.00875 + 4.45217i −0.172830 + 0.191947i
\(539\) 12.9472 5.76446i 0.557675 0.248293i
\(540\) 34.9668 + 15.5682i 1.50473 + 0.669949i
\(541\) 8.87657 + 9.85843i 0.381634 + 0.423847i 0.903104 0.429423i \(-0.141283\pi\)
−0.521470 + 0.853270i \(0.674616\pi\)
\(542\) −2.06029 + 1.49689i −0.0884970 + 0.0642968i
\(543\) 5.06264 3.67822i 0.217258 0.157848i
\(544\) −4.73179 5.25519i −0.202874 0.225314i
\(545\) −1.71690 0.764415i −0.0735441 0.0327439i
\(546\) 2.88853 1.28605i 0.123618 0.0550381i
\(547\) 25.2689 28.0640i 1.08042 1.19993i 0.101684 0.994817i \(-0.467577\pi\)
0.978738 0.205114i \(-0.0657564\pi\)
\(548\) 2.31560 22.0315i 0.0989175 0.941137i
\(549\) 75.8388 16.1200i 3.23672 0.687986i
\(550\) −1.01395 + 3.12062i −0.0432351 + 0.133064i
\(551\) 6.54568 + 1.39133i 0.278855 + 0.0592725i
\(552\) 0.871520 1.50952i 0.0370944 0.0642493i
\(553\) −1.86539 3.23095i −0.0793245 0.137394i
\(554\) 1.64019 + 5.04800i 0.0696852 + 0.214469i
\(555\) 2.82955 + 26.9214i 0.120108 + 1.14275i
\(556\) −23.4124 17.0101i −0.992907 0.721389i
\(557\) −11.3637 −0.481496 −0.240748 0.970588i \(-0.577393\pi\)
−0.240748 + 0.970588i \(0.577393\pi\)
\(558\) 6.17108 8.50711i 0.261243 0.360135i
\(559\) −24.1743 −1.02246
\(560\) 8.52261 + 6.19204i 0.360146 + 0.261661i
\(561\) 1.34179 + 12.7663i 0.0566505 + 0.538993i
\(562\) −0.270094 0.831262i −0.0113932 0.0350647i
\(563\) 10.0933 + 17.4821i 0.425381 + 0.736781i 0.996456 0.0841167i \(-0.0268068\pi\)
−0.571075 + 0.820898i \(0.693474\pi\)
\(564\) 21.6140 37.4365i 0.910113 1.57636i
\(565\) 32.8643 + 6.98552i 1.38261 + 0.293883i
\(566\) −0.513276 + 1.57970i −0.0215746 + 0.0663998i
\(567\) 3.95417 0.840485i 0.166060 0.0352971i
\(568\) 0.238933 2.27329i 0.0100254 0.0953852i
\(569\) −20.7361 + 23.0298i −0.869304 + 0.965460i −0.999662 0.0260074i \(-0.991721\pi\)
0.130358 + 0.991467i \(0.458387\pi\)
\(570\) −5.85026 + 2.60470i −0.245040 + 0.109099i
\(571\) −9.50060 4.22994i −0.397588 0.177017i 0.198196 0.980162i \(-0.436492\pi\)
−0.595784 + 0.803145i \(0.703158\pi\)
\(572\) 8.77291 + 9.74330i 0.366814 + 0.407388i
\(573\) −12.5034 + 9.08427i −0.522338 + 0.379501i
\(574\) −2.13711 + 1.55270i −0.0892012 + 0.0648085i
\(575\) −1.13628 1.26197i −0.0473863 0.0526279i
\(576\) −25.4492 11.3307i −1.06038 0.472113i
\(577\) 4.94581 2.20201i 0.205897 0.0916711i −0.301197 0.953562i \(-0.597386\pi\)
0.507094 + 0.861891i \(0.330720\pi\)
\(578\) −3.21461 + 3.57019i −0.133710 + 0.148500i
\(579\) −0.645291 + 6.13953i −0.0268174 + 0.255150i
\(580\) −17.2404 + 3.66457i −0.715871 + 0.152163i
\(581\) −4.29819 + 13.2285i −0.178319 + 0.548809i
\(582\) 3.39435 + 0.721492i 0.140700 + 0.0299068i
\(583\) −6.05046 + 10.4797i −0.250585 + 0.434025i
\(584\) 9.78162 + 16.9423i 0.404766 + 0.701076i
\(585\) 14.1811 + 43.6451i 0.586318 + 1.80450i
\(586\) 0.387510 + 3.68691i 0.0160079 + 0.152305i
\(587\) 10.1635 + 7.38424i 0.419494 + 0.304780i 0.777434 0.628964i \(-0.216521\pi\)
−0.357940 + 0.933744i \(0.616521\pi\)
\(588\) −31.6471 −1.30510
\(589\) −2.46073 11.5345i −0.101393 0.475270i
\(590\) −12.5532 −0.516809
\(591\) −13.7535 9.99247i −0.565741 0.411035i
\(592\) −1.07697 10.2467i −0.0442634 0.421138i
\(593\) 8.36510 + 25.7451i 0.343513 + 1.05723i 0.962375 + 0.271726i \(0.0875943\pi\)
−0.618861 + 0.785500i \(0.712406\pi\)
\(594\) −2.93098 5.07660i −0.120259 0.208295i
\(595\) −2.93551 + 5.08445i −0.120344 + 0.208442i
\(596\) −21.9345 4.66233i −0.898473 0.190976i
\(597\) −6.19413 + 19.0636i −0.253509 + 0.780220i
\(598\) 0.436832 0.0928516i 0.0178634 0.00379698i
\(599\) 1.50051 14.2764i 0.0613094 0.583320i −0.920139 0.391592i \(-0.871924\pi\)
0.981448 0.191727i \(-0.0614089\pi\)
\(600\) 10.1281 11.2484i 0.413476 0.459212i
\(601\) 0.584684 0.260318i 0.0238498 0.0106186i −0.394777 0.918777i \(-0.629178\pi\)
0.418627 + 0.908158i \(0.362512\pi\)
\(602\) 2.92260 + 1.30122i 0.119116 + 0.0530339i
\(603\) −23.1366 25.6958i −0.942197 1.04642i
\(604\) −6.56150 + 4.76721i −0.266984 + 0.193975i
\(605\) 12.2397 8.89266i 0.497614 0.361538i
\(606\) −12.0543 13.3877i −0.489673 0.543837i
\(607\) −5.95432 2.65104i −0.241679 0.107602i 0.282323 0.959319i \(-0.408895\pi\)
−0.524002 + 0.851717i \(0.675562\pi\)
\(608\) 7.49929 3.33890i 0.304136 0.135410i
\(609\) −6.61834 + 7.35041i −0.268189 + 0.297854i
\(610\) 1.57662 15.0005i 0.0638353 0.607352i
\(611\) 22.3802 4.75706i 0.905405 0.192450i
\(612\) 5.68333 17.4915i 0.229735 0.707052i
\(613\) −10.2171 2.17170i −0.412663 0.0877143i −0.00309833 0.999995i \(-0.500986\pi\)
−0.409565 + 0.912281i \(0.634320\pi\)
\(614\) −0.465385 + 0.806070i −0.0187814 + 0.0325303i
\(615\) −29.8772 51.7489i −1.20477 2.08672i
\(616\) −1.10762 3.40892i −0.0446274 0.137349i
\(617\) −2.26862 21.5845i −0.0913311 0.868958i −0.940262 0.340453i \(-0.889420\pi\)
0.848930 0.528505i \(-0.177247\pi\)
\(618\) 6.64159 + 4.82540i 0.267164 + 0.194106i
\(619\) 28.5478 1.14743 0.573716 0.819054i \(-0.305501\pi\)
0.573716 + 0.819054i \(0.305501\pi\)
\(620\) 18.2777 + 25.1176i 0.734050 + 1.00875i
\(621\) 3.03377 0.121741
\(622\) −1.56738 1.13877i −0.0628462 0.0456604i
\(623\) 0.255566 + 2.43155i 0.0102390 + 0.0974178i
\(624\) −8.41235 25.8906i −0.336764 1.03645i
\(625\) 14.7271 + 25.5080i 0.589083 + 1.02032i
\(626\) 4.68731 8.11866i 0.187343 0.324487i
\(627\) −14.5757 3.09816i −0.582098 0.123729i
\(628\) 5.04743 15.5344i 0.201414 0.619890i
\(629\) 5.61660 1.19385i 0.223949 0.0476018i
\(630\) 0.634818 6.03989i 0.0252917 0.240635i
\(631\) 18.2275 20.2436i 0.725624 0.805887i −0.261609 0.965174i \(-0.584253\pi\)
0.987232 + 0.159287i \(0.0509196\pi\)
\(632\) 4.29075 1.91037i 0.170677 0.0759903i
\(633\) −44.1638 19.6630i −1.75535 0.781533i
\(634\) 2.52561 + 2.80498i 0.100305 + 0.111400i
\(635\) −0.283370 + 0.205880i −0.0112452 + 0.00817012i
\(636\) 21.8607 15.8828i 0.866835 0.629792i
\(637\) −11.2083 12.4481i −0.444089 0.493210i
\(638\) 2.46599 + 1.09793i 0.0976295 + 0.0434675i
\(639\) 8.23296 3.66555i 0.325691 0.145007i
\(640\) −19.0460 + 21.1527i −0.752859 + 0.836135i
\(641\) −4.30742 + 40.9824i −0.170133 + 1.61871i 0.492880 + 0.870097i \(0.335944\pi\)
−0.663013 + 0.748608i \(0.730722\pi\)
\(642\) −12.0853 + 2.56881i −0.476969 + 0.101383i
\(643\) −9.52156 + 29.3044i −0.375494 + 1.15565i 0.567651 + 0.823269i \(0.307852\pi\)
−0.943145 + 0.332382i \(0.892148\pi\)
\(644\) 0.878342 + 0.186697i 0.0346115 + 0.00735691i
\(645\) −36.1834 + 62.6715i −1.42472 + 2.46769i
\(646\) 0.679205 + 1.17642i 0.0267230 + 0.0462855i
\(647\) 2.75525 + 8.47978i 0.108320 + 0.333375i 0.990495 0.137547i \(-0.0439217\pi\)
−0.882175 + 0.470921i \(0.843922\pi\)
\(648\) 0.531973 + 5.06138i 0.0208979 + 0.198830i
\(649\) −23.6317 17.1694i −0.927623 0.673958i
\(650\) 3.87809 0.152111
\(651\) 16.5830 + 5.37445i 0.649938 + 0.210641i
\(652\) −5.86949 −0.229867
\(653\) −31.7469 23.0655i −1.24235 0.902623i −0.244601 0.969624i \(-0.578657\pi\)
−0.997753 + 0.0670010i \(0.978657\pi\)
\(654\) −0.0671825 0.639199i −0.00262704 0.0249946i
\(655\) 5.31417 + 16.3553i 0.207642 + 0.639056i
\(656\) 11.3718 + 19.6965i 0.443993 + 0.769018i
\(657\) −38.5652 + 66.7969i −1.50457 + 2.60600i
\(658\) −2.96175 0.629540i −0.115461 0.0245420i
\(659\) 10.1832 31.3407i 0.396681 1.22086i −0.530963 0.847395i \(-0.678170\pi\)
0.927644 0.373465i \(-0.121830\pi\)
\(660\) 38.3905 8.16015i 1.49435 0.317633i
\(661\) 0.0177359 0.168746i 0.000689846 0.00656345i −0.994172 0.107810i \(-0.965616\pi\)
0.994861 + 0.101246i \(0.0322830\pi\)
\(662\) 4.62022 5.13127i 0.179570 0.199433i
\(663\) 13.8600 6.17087i 0.538278 0.239657i
\(664\) −15.9969 7.12229i −0.620801 0.276398i
\(665\) −4.56036 5.06479i −0.176843 0.196404i
\(666\) −4.80539 + 3.49132i −0.186205 + 0.135286i
\(667\) −1.13021 + 0.821147i −0.0437620 + 0.0317950i
\(668\) 16.7687 + 18.6236i 0.648801 + 0.720567i
\(669\) 16.5503 + 7.36866i 0.639871 + 0.284889i
\(670\) −6.14502 + 2.73594i −0.237403 + 0.105699i
\(671\) 23.4846 26.0823i 0.906612 1.00689i
\(672\) −1.26827 + 12.0668i −0.0489246 + 0.465487i
\(673\) 14.2676 3.03267i 0.549976 0.116901i 0.0754613 0.997149i \(-0.475957\pi\)
0.474514 + 0.880248i \(0.342624\pi\)
\(674\) 2.08278 6.41015i 0.0802258 0.246910i
\(675\) 25.7689 + 5.47735i 0.991845 + 0.210823i
\(676\) −4.44929 + 7.70639i −0.171126 + 0.296400i
\(677\) −7.88341 13.6545i −0.302984 0.524784i 0.673826 0.738890i \(-0.264650\pi\)
−0.976810 + 0.214106i \(0.931316\pi\)
\(678\) 3.55065 + 10.9278i 0.136362 + 0.419679i
\(679\) 0.386039 + 3.67291i 0.0148148 + 0.140953i
\(680\) −5.97963 4.34445i −0.229308 0.166602i
\(681\) 22.7051 0.870063
\(682\) −0.00355200 4.75744i −0.000136013 0.182172i
\(683\) 20.5935 0.787988 0.393994 0.919113i \(-0.371093\pi\)
0.393994 + 0.919113i \(0.371093\pi\)
\(684\) 17.2724 + 12.5492i 0.660428 + 0.479829i
\(685\) −3.66897 34.9079i −0.140184 1.33376i
\(686\) 1.50763 + 4.64001i 0.0575616 + 0.177156i
\(687\) 18.4780 + 32.0048i 0.704979 + 1.22106i
\(688\) 13.7720 23.8538i 0.525053 0.909418i
\(689\) 13.9896 + 2.97359i 0.532962 + 0.113285i
\(690\) 0.413123 1.27146i 0.0157273 0.0484037i
\(691\) 5.82165 1.23743i 0.221466 0.0470741i −0.0958421 0.995397i \(-0.530554\pi\)
0.317308 + 0.948322i \(0.397221\pi\)
\(692\) 3.73557 35.5416i 0.142005 1.35109i
\(693\) 9.45597 10.5019i 0.359203 0.398935i
\(694\) 3.42238 1.52374i 0.129912 0.0578404i
\(695\) −41.8889 18.6502i −1.58894 0.707441i
\(696\) −8.33206 9.25369i −0.315826 0.350760i
\(697\) −10.2545 + 7.45032i −0.388417 + 0.282201i
\(698\) 5.31713 3.86312i 0.201256 0.146221i
\(699\) −24.6209 27.3443i −0.931248 1.03426i
\(700\) 7.12357 + 3.17162i 0.269245 + 0.119876i
\(701\) −24.3281 + 10.8316i −0.918859 + 0.409103i −0.810988 0.585062i \(-0.801070\pi\)
−0.107871 + 0.994165i \(0.534403\pi\)
\(702\) −4.63592 + 5.14871i −0.174972 + 0.194326i
\(703\) −0.696753 + 6.62916i −0.0262785 + 0.250024i
\(704\) −12.3348 + 2.62185i −0.464886 + 0.0988146i
\(705\) 21.1655 65.1407i 0.797138 2.45334i
\(706\) 4.35268 + 0.925191i 0.163815 + 0.0348200i
\(707\) 9.58617 16.6037i 0.360525 0.624448i
\(708\) 32.6133 + 56.4879i 1.22568 + 2.12295i
\(709\) −0.816662 2.51343i −0.0306704 0.0943938i 0.934550 0.355833i \(-0.115803\pi\)
−0.965220 + 0.261439i \(0.915803\pi\)
\(710\) −0.183259 1.74359i −0.00687757 0.0654357i
\(711\) 14.9812 + 10.8845i 0.561839 + 0.408200i
\(712\) −3.07802 −0.115354
\(713\) 2.13321 + 1.22948i 0.0798892 + 0.0460445i
\(714\) −2.00779 −0.0751398
\(715\) 16.8063 + 12.2105i 0.628519 + 0.456646i
\(716\) −0.0155603 0.148047i −0.000581518 0.00553277i
\(717\) 22.7315 + 69.9605i 0.848925 + 2.61272i
\(718\) 3.98491 + 6.90207i 0.148716 + 0.257583i
\(719\) −2.59912 + 4.50181i −0.0969308 + 0.167889i −0.910413 0.413701i \(-0.864236\pi\)
0.813482 + 0.581590i \(0.197569\pi\)
\(720\) −51.1455 10.8713i −1.90608 0.405150i
\(721\) −2.69986 + 8.30930i −0.100548 + 0.309455i
\(722\) 4.98886 1.06041i 0.185666 0.0394645i
\(723\) 0.714035 6.79359i 0.0265552 0.252656i
\(724\) −2.71572 + 3.01611i −0.100929 + 0.112093i
\(725\) −11.0826 + 4.93428i −0.411596 + 0.183254i
\(726\) 4.72660 + 2.10442i 0.175421 + 0.0781023i
\(727\) 16.1973 + 17.9889i 0.600723 + 0.667171i 0.964429 0.264343i \(-0.0851551\pi\)
−0.363705 + 0.931514i \(0.618488\pi\)
\(728\) −3.42729 + 2.49007i −0.127024 + 0.0922882i
\(729\) 31.9419 23.2071i 1.18303 0.859524i
\(730\) 10.0402 + 11.1507i 0.371603 + 0.412707i
\(731\) 14.0235 + 6.24366i 0.518677 + 0.230930i
\(732\) −71.5963 + 31.8767i −2.64628 + 1.17820i
\(733\) 27.0080 29.9954i 0.997562 1.10790i 0.00340093 0.999994i \(-0.498917\pi\)
0.994161 0.107910i \(-0.0344159\pi\)
\(734\) −0.320315 + 3.04759i −0.0118230 + 0.112489i
\(735\) −49.0478 + 10.4254i −1.80916 + 0.384548i
\(736\) −0.529571 + 1.62985i −0.0195202 + 0.0600771i
\(737\) −15.3101 3.25427i −0.563955 0.119872i
\(738\) 6.55583 11.3550i 0.241324 0.417985i
\(739\) −3.04893 5.28089i −0.112157 0.194261i 0.804483 0.593976i \(-0.202442\pi\)
−0.916640 + 0.399715i \(0.869109\pi\)
\(740\) −5.42526 16.6972i −0.199437 0.613803i
\(741\) 1.84095 + 17.5155i 0.0676292 + 0.643449i
\(742\) −1.53125 1.11251i −0.0562138 0.0408417i
\(743\) 16.2263 0.595284 0.297642 0.954678i \(-0.403800\pi\)
0.297642 + 0.954678i \(0.403800\pi\)
\(744\) −8.91125 + 20.0553i −0.326702 + 0.735262i
\(745\) −35.5308 −1.30175
\(746\) −7.22540 5.24956i −0.264541 0.192200i
\(747\) −7.21649 68.6603i −0.264038 2.51215i
\(748\) −2.57269 7.91793i −0.0940670 0.289508i
\(749\) −6.57456 11.3875i −0.240229 0.416089i
\(750\) −1.75329 + 3.03680i −0.0640213 + 0.110888i
\(751\) −35.6481 7.57723i −1.30082 0.276497i −0.495119 0.868825i \(-0.664876\pi\)
−0.805697 + 0.592328i \(0.798209\pi\)
\(752\) −8.05593 + 24.7936i −0.293770 + 0.904130i
\(753\) 6.66944 1.41763i 0.243048 0.0516614i
\(754\) 0.333487 3.17292i 0.0121449 0.115551i
\(755\) −8.59879 + 9.54992i −0.312942 + 0.347557i
\(756\) −12.7264 + 5.66615i −0.462854 + 0.206076i
\(757\) 39.7960 + 17.7183i 1.44641 + 0.643984i 0.971713 0.236164i \(-0.0758904\pi\)
0.474699 + 0.880148i \(0.342557\pi\)
\(758\) 5.19641 + 5.77120i 0.188742 + 0.209619i
\(759\) 2.51672 1.82851i 0.0913512 0.0663705i
\(760\) 6.94144 5.04325i 0.251792 0.182938i
\(761\) 2.20765 + 2.45184i 0.0800272 + 0.0888792i 0.781828 0.623494i \(-0.214287\pi\)
−0.701801 + 0.712373i \(0.747621\pi\)
\(762\) −0.109429 0.0487209i −0.00396419 0.00176497i